Skip to main content
Log in

A Non-Singular Universe with Vacuum Energy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A model for the universe based on the back-reaction effects of quantum fields at finite temperature in the background of Robertson-Walker spacetime and in the presence of a non-zero cosmological constant is constructed. We discuss the vacuum regime in the light of the results obtained through previous studies of the back-reaction of massless quantum fields in the static Einstein universe, and we argue that an adiabatic vacuum state and thermal equilibrium is achieved throughout this regime. Critical density is maintained naturally from the very early stages as a consequence of back-reaction effect of the vacuum fluctuations of quantum fields. Results show that such a model can explain many features of the early universe as well as the present universe. The model is free from the basic problems of the standard Friedmann cosmology, and is non-singular but involves a continuous creation of energy at a rate proportional to the size of the universe, which is lower than that suggested by the steady-state cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.L., et al.: Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  2. Spergel, D.N., et al.: Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  3. Dunkley, J., et al.: Astrophys. J. Suppl. 180, 306–329 (2009)

    Article  ADS  Google Scholar 

  4. Guth, A.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  5. Liddle, A.: Class. Quantum Gravity 19, 3391–3401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hollands, S., Wald, R.: Gen. Relativ. Gravit. 34, 2043–2055 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Turok, N.: Class. Quantum Gravity 19, 3449–3467 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ozer, M., Taha, A.: Nucl. Phys. B 287, 776–796 (1987)

    Article  ADS  Google Scholar 

  9. Chen, W., Wu, Y.S.: Phys. Rev. D 41, 695 (1990)

    Article  ADS  Google Scholar 

  10. Altaie, M.B.: Phys. Rev. D 65, 044028 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Gravity 21, 233 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Altaie, M.B., Setari, M.R.: Phys. Rev. D 67, 044018 (2003)

    Article  ADS  Google Scholar 

  13. Corvero, J.M.: Gen. Relativ. Gravit. 10, 503–508 (1979)

    ADS  Google Scholar 

  14. Altaie, M.B.: Class. Quantum Gravity 20, 331–340 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Altaie, M.B., Ahmad, U.: arXiv:0907.3457v1 [gr-qc]

  16. Coleman, S.: Phys. Rev. D 15, 2929 (1977)

    Article  ADS  Google Scholar 

  17. Vilenkin, A.: Phys. Rev. D 30, 509 (1984). Rapid Communication

    Article  MathSciNet  ADS  Google Scholar 

  18. Kennedy, G.: J. Phys. A 11, L77 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Altaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altaie, M.B., al-Ahmad, U. A Non-Singular Universe with Vacuum Energy. Int J Theor Phys 50, 3521–3528 (2011). https://doi.org/10.1007/s10773-011-0860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0860-5

Keywords

Navigation