Skip to main content
Log in

Black Hole Entropy: From Shannon to Bekenstein

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed Banerjee in Int. J. Mod. Phys. D 19:2365–2369, 2010 and Banerjee and Majhi in Phys. Rev. D 81:124006, 2010; Phys. Rev. D 79:064024, 2009; Phys. Lett. B 675:243, 2009) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of Brillouin (Science and Information Theory, Dover, New York, 2004). Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975). Erratum-ibid. 46, 206 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. Shannon, C.E.: Bell Syst. Tech. J. 27(379), 623 (1948)

    MathSciNet  Google Scholar 

  5. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  6. Jayens, E.T.: Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  7. Jayens, E.T.: Phys. Rev. 108, 171 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  8. Jayens, E.T.: Brandeis University Summer Institute, Lectures in Theoretical Physics. Benjamin, Elmsford (1962)

    Google Scholar 

  9. Brillouin, L.: Science and Information Theory. Dover, New York (2004). (1956, 1962) ISBN 0-486-43918-6

    Google Scholar 

  10. Bialynicki-Birula, I., Mycielski, J.: Commun. Math. Phys. 44, 129 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bialynicki-Birula, I.: Phys. Lett. A 103, 253 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bialynicki-Birula, I., Rudnicki, L.: arXiv:1001.4668v1

  13. Banerjee, R.: Int. J. Mod. Phys. D 19, 2365–2369 (2010). arXiv:1005.4286

    Article  ADS  MATH  Google Scholar 

  14. Banerjee, R., Majhi, B.R.: Phys. Rev. D 81, 124006 (2010). arXiv:1003.2312 [gr-qc]

    Article  ADS  Google Scholar 

  15. Banerjee, R., Majhi, B.R.: Phys. Rev. D 79, 064024 (2009). arXiv:0812.0497 [hep-th]

    Article  ADS  Google Scholar 

  16. Banerjee, R., Majhi, B.R.: Phys. Lett. B 675, 243 (2009). arXiv:0903.0250

    Article  MathSciNet  ADS  Google Scholar 

  17. Davies, P.C.W., Fulling, S.A.: Proc. R. Soc. Lond. A 354, 59 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  18. Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005). arXiv:gr-qc/0502074

    Article  MathSciNet  ADS  Google Scholar 

  19. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. Lett. 96, 151302 (2006). arXiv:hep-th/0602146

    Article  MathSciNet  ADS  Google Scholar 

  20. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. D 74, 044017 (2006). arXiv:hep-th/0606018

    Article  MathSciNet  ADS  Google Scholar 

  21. Murata, K., Soda, J.: Phys. Rev. D 74, 044018 (2006). arXiv:hep-th/0606069

    Article  MathSciNet  ADS  Google Scholar 

  22. Vagenas, E.C., Das, S.: J. High Energy Phys. 0610, 025 (2006). arXiv:hep-th/0606077

    Article  MathSciNet  ADS  Google Scholar 

  23. Setare, M.R.: Eur. Phys. J. C 49, 865 (2007). arXiv:hep-th/0608080

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Xu, Z., Chen, B.: Phys. Rev. D 75, 024041 (2007). arXiv:hep-th/0612261

    Article  MathSciNet  ADS  Google Scholar 

  25. Iso, S., Morita, T., Umetsu, H.: J. High Energy Phys. 0704, 068 (2007). arXiv:hep-th/0612286

    Article  MathSciNet  ADS  Google Scholar 

  26. Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 647, 200 (2007). arXiv:hep-th/0701002

    Article  MathSciNet  ADS  Google Scholar 

  27. Jiang, Q.Q., Wu, S.Q., Cai, X.: arXiv:hep-th/0701048

  28. Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 75, 064029 (2007). arXiv:hep-th/0701235

    Article  MathSciNet  ADS  Google Scholar 

  29. Kui, X., Liu, W., Zhang, H.: Phys. Lett. B 647, 482 (2007). arXiv:hep-th/0702199

    Article  MathSciNet  ADS  Google Scholar 

  30. Shin, H., Kim, W.: J. High Energy Phys. 0706, 012 (2007). arXiv:0705.0265 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. Peng, J.J., Wu, S.Q.: Chin. Phys. B 17, 825 (2008). arXiv:0705.1225 [hep-th]

    Article  ADS  Google Scholar 

  32. Jiang, Q.Q.: Class. Quantum Gravity 24, 4391–4406 (2007). arXiv:0705.2068 [hep-th]

    Article  ADS  MATH  Google Scholar 

  33. Chen, B., He, W.: arXiv:0705.2984 [gr-qc]

  34. Miyamoto, U., Murata, K.: Phys. Rev. D 77, 024020 (2008). arXiv:0705.3150 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  35. Iso, S., Morita, T., Umetsu, H.: Phys. Rev. D 76, 064015 (2007). arXiv:0705.3494 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. Das, S., Robinson, S.P., Vagenas, E.C.: Int. J. Mod. Phys. D 17, 533–539 (2008). arXiv:0705.2233

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Singleton, D., Vagenas, E.C., Zhu, T., Ren, J.-R.: J. High Energy Phys. 1008, 089 (2010). Erratum-ibid. 1101, 021 (2011). arXiv:1005.3778 [gr-qc]

    Article  ADS  Google Scholar 

  38. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 673, 227 (2009). arXiv:0808.3413

    Article  MathSciNet  ADS  Google Scholar 

  39. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 666, 269 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2452 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Vancea, I.V., Santos, M.A.: arXiv:1002.2454v1 [hep-th]

  42. Ghosh, S.: Mod. Phys. Lett. A (to appear). arXiv:1003.0285

  43. Verlinde, E.P.: arXiv:1001.0785 [hep-th]

  44. Deser, S., Levin, O.: Class. Quantum Gravity 14, L163 (1997). arXiv:gr-qc/9706018

    Article  MathSciNet  ADS  Google Scholar 

  45. Deser, S., Levin, O.: Class. Quantum Gravity 15, L85 (1998). arXiv:hep-th/9806223

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Banerjee, R., Majhi, B.R.: Phys. Lett. B 690, 83 (2010). arXiv:1002.0985

    Article  MathSciNet  ADS  Google Scholar 

  47. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S. Black Hole Entropy: From Shannon to Bekenstein. Int J Theor Phys 50, 3515–3520 (2011). https://doi.org/10.1007/s10773-011-0859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0859-y

Keywords

Navigation