Skip to main content
Log in

A Link between Quantum Logic and Categorical Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Abramsky and Coecke (Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, IEEE Comput. Soc., New York, 2004) have recently introduced an approach to finite dimensional quantum mechanics based on strongly compact closed categories with biproducts. In this note it is shown that the projections of any object A in such a category form an orthoalgebra ProjA. Sufficient conditions are given to ensure this orthoalgebra is an orthomodular poset. A notion of a preparation for such an object is given by Abramsky and Coecke, and it is shown that each preparation induces a finitely additive map from ProjA to the unit interval of the semiring of scalars for this category. The tensor product for the category is shown to induce an orthoalgebra bimorphism ProjA×ProjBProj (A B) that shares some of the properties required of a tensor product of orthoalgebras.

These results are established in a setting more general than that of strongly compact closed categories. Many are valid in dagger biproduct categories, others require also a symmetric monoidal tensor compatible with the dagger and biproducts. Examples are considered for several familiar strongly compact closed categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories. In: Proceedings of CALCO 2005. Springer Lecture Notes in Comp. Sci., vol. 3629, pp. 1–31. Springer, Berlin (2005)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS‘04), pp. 415–425. IEEE Comput. Soc., New York (2004) (Extended version at arXiv:quant-ph/0402130)

    Chapter  Google Scholar 

  3. Abramsky, S., Coecke, B.: Abstract physical traces. Theory Appl. Categ. 12, 111–124 (2005)

    MathSciNet  Google Scholar 

  4. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  5. Dvurec̆enskij, A.: Tensor products of difference posets. Trans. Am. Math. Soc. 347(3), 1043–1057 (1995)

    Article  MathSciNet  Google Scholar 

  6. Dvurec̆enskij, A.: Gleason’s Theorem and Its Applications. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  7. Foulis, D.J., Greechie, R.J., Rüttimann, G.T.: Filters and supports in orthoalgebras. Int. J. Theor. Phys. 31(5), 789–807 (1992)

    Article  MATH  Google Scholar 

  8. Foulis, D.J.: Algebraic measure theory. Atti Semin. Mat. Fis. Univ. Modena 48(2), 435–461 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Foulis, D.J., Bennett, M.K.: Tensor products of orthoalgebras. Order 10, 271–282 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Herrlich, H., Strecker, G.: Category Theory: An Introduction. Allyn and Bacon, Needham Heights (1973)

    MATH  Google Scholar 

  11. Harding, J.: Decompositions in quantum logic. Trans. Am. Math. Soc. 348(5), 1839–1862 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harding, J.: Orthomodularity of decompositions in a categorical setting. Int. J. Theor. Phys. 45(6), 1117–1128 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Janusz, G.: Parameterization of self-dual codes by orthogonal matrices. Finite Fields Their Appl. 13, 450–491 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kalmbach, G.: Orthomodular Lattices. Academic Press, San Diego (1983)

    MATH  Google Scholar 

  15. Katrnos̆ka, F.: Logics of idempotents of rings. In: Proc. Second Winter School on Measure Theory Ján Liptovský, Jednota Slovensk, pp. 100–104. Mat. Fyz., Bratislava (1990)

    Google Scholar 

  16. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra 19, 193–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mackey, G.: The Mathematical Foundations of Quantum Mechanics. Benjamin, Elmsford (1963)

    MATH  Google Scholar 

  18. MacLean, S.: Categories for the Working Mathematician. Springer Graduate Texts in Mathematics, vol. 5. Springer, Berlin (1971)

    Google Scholar 

  19. Piron, C.: Foundations of Quantum Physics. Benjamin, Elmsford (1976)

    MATH  Google Scholar 

  20. Pták, P., Pulmanová, S.: Orthomodular Structures as Quantum Logics. Fundamental Theories of Physics, vol. 44. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  21. Selinger, P.: Dagger compact closed categories and completely positive maps (extended abstract). Electron. Notes Theor. Comput. Sci. 170, 139–163 (2007)

    Article  MathSciNet  Google Scholar 

  22. Selinger, P.: Idempotents in dagger categories. Electron. Notes Theor. Comput. Sci. 210, 107–122 (2008)

    Article  Google Scholar 

  23. Wilce, A.: Quantum logic and quantum probability. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/qt-quantlog/, Feb. 2002; revised February, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, J. A Link between Quantum Logic and Categorical Quantum Mechanics. Int J Theor Phys 48, 769–802 (2009). https://doi.org/10.1007/s10773-008-9853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9853-4

Keywords

Navigation