Skip to main content
Log in

The Gravitational Waves from Test Particles around Black Holes Immersed in a Strong Magnetic Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we calculate the gravitational waveform from free test particles around Schwarzschild black holes immersed in a uniform strong magnetic field. By comparing with the cases of the Schwarzschild black holes, we find that for stable circle orbits, magnetic field can amplify amplitude and frequency of gravitational waves (here after GWs). For other general orbits, the uniform magnetic field also can amplify amplitude of GWs, enhance energy radiation of GWs and make it to shift to higher frequency. Another obvious influence of magnetic field B is that it can change the form of h × component of GWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, J.H., Wolszczan, A., Damour, T., Weisberg, J.M.: Nature 355, 132 (1992)

    Article  ADS  Google Scholar 

  2. Levin, J.: Phys. Rev. Lett. 84, 3515 (2000)

    Article  ADS  Google Scholar 

  3. Levin, J., O’Reilly, R., Copeland, E.J.: Phys. Rev. D 62, 024023 (2000)

    Article  ADS  Google Scholar 

  4. Cornish, N.J.: Phys. Rev. Lett. 85, 3980 (2000)

    Article  ADS  Google Scholar 

  5. Cornish, N.J.: Phys. Rev. D 64, 084011 (2001)

    Article  ADS  Google Scholar 

  6. Cornish, N.J.: Phys. Rev. D 65, 022004 (2002)

    Article  ADS  Google Scholar 

  7. Porter, E.K.: Phys. Rev. D 76, 104002 (2007)

    Article  ADS  Google Scholar 

  8. Cokelaer, T.: Phys. Rev. D 76, 102004 (2007)

    Article  ADS  Google Scholar 

  9. Kidder, L.E.: Phys. Rev. D 77, 044016 (2008)

    Article  ADS  Google Scholar 

  10. Abbott, B., et al.: Phys. Rev. D 77, 062002 (2008)

    Article  ADS  Google Scholar 

  11. Boyle, M., et al.: Phys. Rev. D 76, 124038 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Baker, J.G., et al.: Phys. Rev. Lett. 99, 181101 (2007)

    Article  ADS  Google Scholar 

  13. Vaishnav, B., Hinder, I., Herrmann, F., Shoemaker, D.: Phys. Rev. D 76, 084020 (2007)

    Article  ADS  Google Scholar 

  14. Buonanno, A., Damour, T.: Phys. Rev. D 59, 084006 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Buonanno, A., et al.: Phys. Rev. D 76, 104049 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Damour, T., Nagar, A.: Phys. Rev. D 77, 024043 (2008)

    Article  ADS  Google Scholar 

  17. Mino, Y., Shibata, M., Tanaka, T.: Phys. Rev. D 54, 3262 (1996)

    MathSciNet  Google Scholar 

  18. Saijo, M., Maeda, K., Shibata, M., Mino, Y.: Phys. Rev. D 58, 064005 (1998)

    Article  Google Scholar 

  19. Suziki, S., Maeda, K.: Phys. Rev. D 61, 024005 (1999)

    Article  ADS  Google Scholar 

  20. Kiuchi, K., Maeda, K.: Phys. Rev. D 70, 064036 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ernst, F.J.: J. Math. Phys. 17, 54 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1951)

    MATH  Google Scholar 

  23. Thorne, K.: Rev. Mod. Phys. 52, 299 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. Flanagan, É., Hughes, S.: arxiv:gr-qc/0501041v (2005)

  25. Lincoln, C.W., Will, C.M.: Phys. Rev. D 42, 1123 (1990)

    Article  ADS  Google Scholar 

  26. Levin, J.: Phys. Rev. D 74, 124027 (2006)

    Article  ADS  Google Scholar 

  27. Wu, X., Xie, Y.: Phys. Rev. D 77, 103012 (2008)

    Article  ADS  Google Scholar 

  28. Hartl, M.: Phys. Rev. D 67, 104023 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-biao Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Wb. The Gravitational Waves from Test Particles around Black Holes Immersed in a Strong Magnetic Field. Int J Theor Phys 48, 621–629 (2009). https://doi.org/10.1007/s10773-008-9835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9835-6

Keywords

Navigation