Skip to main content
Log in

The Ensemble Quantum State of a Single Particle

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The derivation of the statistical nature of the quantum mechanical wave function is presented within the formalism of quantum mechanics and the second quantization. The statistical wave function may be derived for non relativistic bosons, non relativistic fermions, and relativistic bosons by employing the commuting field operator \(\hat{\psi}(x)\) . For relativistic electrons a strictly anticommuting \(\hat{\psi}(x)\) must be employed to derive the statistical wave function (spinor). The discussion at the end of the paper aims to show the physical plausibility of a statistical wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballantine, L.E.: Rev. Mod. Phys. 42(4), 358 (1970)

    Article  ADS  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  3. Khrennikov, A.: J. Math. Phys. 43(2), 789 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bohr, N.: Phys. Rev. 48, 696 (1935)

    Article  MATH  ADS  Google Scholar 

  5. Rosenstein, B.: Int. J. Theor. Phys. 23(2), 147 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Einstein, A.: Philosopher-Scientist. Harper and Row, New York (1949), p. 665

    Google Scholar 

  7. Ali, A.H.: J. Math. Phys. 47, 083302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1996)

    MATH  Google Scholar 

  9. Greiner, W., Neise, L., Stöcker, H.: Thermodynamics and Statistical Mechanics. Springer, Berlin (1995)

    MATH  Google Scholar 

  10. Fano, U.: Rev. Mod. Phys. 29(1), 74 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Glauber, R.J.: Phys. Rev. Lett. 10(3), 84 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  12. Glauber, R.J.: Phys. Rev. 131(6), 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  13. Glauber, R.J.: Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Oxford University Press, London (1947), pp. 239–242

    MATH  Google Scholar 

  15. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999), p. 57

    Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  17. Cahill, K.E., Glauber, R.J.: Phys. Rev. A 59(2), 1538 (1999)

    Article  ADS  Google Scholar 

  18. Tyc, T., Hamilton, B., Sanders, B.C., Oliver, W.D.: Found. Phys. 37(7), 1027–1048 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Greiner, W.: Relativistic Quantum Mechanics. Springer, Berlin (2000)

    MATH  Google Scholar 

  20. Bohm, D.: Phys. Rev. 85(2), 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nelson, E.: Phys. Rev. 150(4), 1079 (1966)

    Article  ADS  Google Scholar 

  22. Kershaw, D.: Phys. Rev. 136(6B), B1850 (1964)

    Article  MathSciNet  Google Scholar 

  23. Puthoff, H.E.: Phys. Rev. D 35(10), 3266 (1987)

    Article  ADS  Google Scholar 

  24. Boyer, T.H.: Phys. Rev. A 5(4), 1799 (1972)

    Article  ADS  Google Scholar 

  25. Boyer, T.H.: Phys. Rev. D 11(4), 790 (1975)

    Article  Google Scholar 

  26. Boyer, T.H.: Phys. Rev. 182(5), 1374 (1969)

    Article  ADS  Google Scholar 

  27. Sukenik, C.I., Boshier, M.G., Cho, D., Sandoghdar, V., Hinds, E.A.: Phys. Rev. Lett. 70, 560 (1993)

    Article  ADS  Google Scholar 

  28. Boyer, T.H.: Phys. Rev. 182(5), 1374 (1997)

    Article  ADS  Google Scholar 

  29. Einstein, A., Hopf, L.: Ann. Phys. 33, 1105 (1910)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmuhsen H. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A.H. The Ensemble Quantum State of a Single Particle. Int J Theor Phys 48, 194–212 (2009). https://doi.org/10.1007/s10773-008-9795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9795-x

Keywords

Navigation