Skip to main content
Log in

A Closed-System Approach to Quantum Retrodiction in Open Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Ban (Int. J. Theor. Phys. 46:184, 2007) has shown how retrodictive open systems evolution may be treated as unitary using non-equilibrium thermo field dynamics. Here we describe the application of another technique with the same purpose, Fano diagonalisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Albert, D.Z.: Is the usual notion of time evolution adequate for quantum-mechanical systems? I. Phys. Rev. D 29, 223 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aharonov, Y., Albert, D.Z.: Is the usual notion of time evolution adequate for quantum-mechanical systems? II. Relativistic considerations. Phys. Rev. D 29, 228 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arimitsu, T.: General formulation for open systems mirror operation. J. Phys. Soc. Jpn. 51, 1720 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. Arimitsu, T., Umezawa, H.: A general formulation of non-equilibrium thermo field dynamics. Prog. Theor. Phys. 74, 429 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Arimitsu, T., Umezawa, H.: Non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 32 (1987)

    Article  ADS  Google Scholar 

  8. Arimitsu, T., Umezawa, H.: General structure of non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 53 (1987)

    Article  ADS  Google Scholar 

  9. Ban, M.: Quantum retrodiction in non-equilibrium thermo field dynamics. Int. J. Theor. Phys. 46, 184 (2007)

    Article  MathSciNet  Google Scholar 

  10. Barnett, S.M., Radmore, P.M.: Quantum theory of cavity quasimodes. Opt. Commun. 68, 364 (1988)

    Article  ADS  Google Scholar 

  11. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (1997)

    Google Scholar 

  12. Barnett, S.M., Pegg, D.T., Jeffers, J.: Bayes’ theorem and quantum retrodiction. J. Mod. Opt. 47, 1779 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

  13. Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O.: Atomic retrodiction. J. Phys. B: At. Mol. Opt. Phys. 33, 3047 (2000)

    Article  ADS  Google Scholar 

  14. Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O., Loudon, R.: Retrodiction for quantum optical communications. Phys. Rev. A 62, 022313 (2000)

    Article  ADS  Google Scholar 

  15. Barnett, S.M., Pegg, D.T., Jeffers, J., Jedrkiewicz, O.: Master equation for retrodiction of quantum communication signals. Phys. Rev. Lett. 86, 2455 (2001)

    Article  ADS  Google Scholar 

  16. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    Article  MATH  ADS  Google Scholar 

  17. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  18. Huttner, B., Barnett, S.M.: Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306 (1992)

    Article  ADS  Google Scholar 

  19. Jedrkiewicz, O., Loudon, R., Jeffers, J.: Retrodiction for optical attenuators, amplifiers and detectors. Phys. Rev. A 70, 033805 (2004)

    Article  ADS  Google Scholar 

  20. Jeffers, J.: Retrodictive fidelities for pure state postselectors. New J. Phys. 8, 268 (2006)

    Article  ADS  Google Scholar 

  21. Jeffers, J., Horak, P., Barnett, S.M., Radmore, P.M.: Bound mode of an atom laser. Phys. Rev. A 62, 043602 (2000)

    Article  ADS  Google Scholar 

  22. Jeffers, J., Barnett, S.M., Pegg, D.T.: Retrodiction as a tool for micromaser field measurements. J. Mod. Opt. 49, 925 (2002)

    Article  MATH  ADS  Google Scholar 

  23. Pegg, D.T., Jeffers, J.: Quantum state of a laser. J. Mod. Opt. 52, 1835 (2005)

    Article  MATH  ADS  Google Scholar 

  24. Pegg, D.T., Barnett, S.M., Jeffers, J.: Quantum theory of preparation and measurement. J. Mod. Opt. 49, 913 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Pegg, D.T., Barnett, S.M., Jeffers, J.: Quantum retrodiction in open systems. Phys. Rev. A 66, 022106 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Penfield, R.H.: More on the arrow of time. Am. J. Phys. 34, 422 (1966)

    Article  ADS  Google Scholar 

  27. Schmidt, E., Jeffers, J., Barnett, S.M., Knöll, L., Welsch, D.-G.: Quantum theory of light in nonlinear media with dispersion and absorption. J. Mod. Opt. 45, 377 (1998)

    Article  ADS  Google Scholar 

  28. Tan, E.-K., Jeffers, J., Barnett, S.M.: Field-state measurement in a micromaser using retrodictive quantum theory. Phys. Rev. A 69, 043806 (2004)

    Article  ADS  Google Scholar 

  29. Watanabe, S.: Symmetry of physical laws. Part III. Prediction and retrodiction. Rev. Mod. Phys. 27, 179 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Jeffers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scroggie, A.J., Jeffers, J. A Closed-System Approach to Quantum Retrodiction in Open Systems. Int J Theor Phys 47, 1809–1816 (2008). https://doi.org/10.1007/s10773-007-9623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9623-8

Keywords

Navigation