Skip to main content
Log in

The Kantowski-Sachs Space-Time in Loop Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We extend the ideas introduced in the previous work to a more general space-time. In particular we consider the Kantowski-Sachs space time with space section with topology \(R \times S^2\). In this way we want to study a general space time that we think to be the space time inside the horizon of a black hole. In this case the phase space is four dimensional and we simply apply the quantization procedure suggested by loop quantum gravity and based on an alternative to the Schroedinger representation introduced by H. Halvorson. Through this quantization procedure we show that the inverse of the volume density and the Schwarzschild curvature invariant are upper bounded and so the space time is singularity free. Also in this case we can extend dynamically the space time beyond the classical singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashtekar, A. (2004). Background independent quantum gravity: A status report. Classical and Quantum Gravity 21, R53.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Bojovald, M. (2005). Black hole evaporation: A paradigm. Classical and Quantum Gravity 22, 3349–3362.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., Fairhurst, S., and Willis, J. (2003). Quantum gravity, shadow states, and quantum mechanics. Classical and Quantum Gravity 20, 1031–1062.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., Bojowald, M., and Lewandowski, J. (2003). Mathematical structure of loop quantum cosmology. Advancement in Theoretical and Mathematical Physics 7 233–268.

    Google Scholar 

  • Bojowald, M. (2001a). Inverse scale factor in isotropic quantum geometry. Physical Review D 64, 084018.

    Article  MathSciNet  ADS  Google Scholar 

  • Bojowald, M. (2001b). Loop quantum cosmology IV: Discrete time evolution. Classical and Quantum Gravity 18, 1071.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Christodoulakis, T. (2002). Lectures on quantum cosmology. Lecture Notes in Physics 592, 318–350, gr-qc/0109059.

    Article  MATH  ADS  Google Scholar 

  • Gambini, R., Lewandowski, J., Marolf, D., and Pullin, J. (1998). On the consistency of the constraint algebra in spin network quantum gravity. International Journal of Modern Physics D 7, 97–109.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Halliwell, J. and Louko, J. (1990). Steeps-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models. Physical Review D 42, 3997.

    Article  MathSciNet  ADS  Google Scholar 

  • Halvorson, H. (2001). Complementary of representations in quantum mechanics, quant-ph/0110102.

  • Kantowski, R. and Sachs, R. K. (1966). Journal of Mathematical Physics 7, 443.

    Google Scholar 

  • Leonardo, M. (2004). Disappearance of the black hole singularity in quantum gravity. Physical Review D 70, 124009, gr-qc/0407097.

    Article  MathSciNet  Google Scholar 

  • Luca, B. and Torrence, R. J. (1990). Perfect fluids and Ashtekar variables, with application to Kantowski-Sachs models. Classical and Quantum Gravity 7, 1747–1745.

    Article  MathSciNet  Google Scholar 

  • Rovelli, C. (2002). Partial observables. Phyical Review D 65, 124013, gr-qc/0110035.

    Article  MathSciNet  ADS  Google Scholar 

  • Rovelli, C. (2004). Quantum Gravity, Cambridge University Press, Cambridge.

  • Thiemann, T. (1996). Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Physical Letters B 380, 257–264.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Thiemann, T. (1998a). Quantum spin dynamics. Classical and Quantum Gravity 15, 839.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thiemann, T. (1998b). QSD III: Quantum constraint algebra and physical scalar product in quantum general relativity. Classical and Quantum Gravity 15, 1207–1247.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thiemann, T. (2001). Introduction to Modern Canonical Quantum General Relativity, gr-qc/0110034.

  • Thiemann, T. (2003). Lectures on Loop Quantum Gravity, gr-qc/0210094.

  • Viqar, H. and Oliver, W. (2003). On singularity resolution in quantum gravity, gr-qc/0312094.

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS number: 04.60.Pp, 04.70.Dy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modesto, L. The Kantowski-Sachs Space-Time in Loop Quantum Gravity. Int J Theor Phys 45, 2235–2246 (2006). https://doi.org/10.1007/s10773-006-9188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9188-y

KEY WORDS:

Navigation