Skip to main content

Advertisement

Log in

Fault-aware Communication Mapping for NoCs with Guaranteed Latency

  • Special Issue
  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

As feature sizes shrink, transient failures of on-chip network links become a critical problem. At the same time, many applications require guarantees on both message arrival probability and response time. We address the problem of transient link failures by means of temporally and spatially redundant transmission of messages, such that designer-imposed message arrival probabilities are guaranteed. Response time minimisation is achieved by a heuristic that statically assigns multiple copies of each message to network links, intelligently combining temporal and spatial redundancy. Concerns regarding energy consumption are addressed in two ways. First, we reduce the total amount of transmitted messages, and, second, we minimise the application response time such that the resulted time slack can be exploited for energy savings through voltage reduction. The advantages of the proposed approach are guaranteed message arrival probability and guaranteed worst case application response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diefenderhoff K. (2000). Extreme Lithography. Microprocessor Rep. 6(19): 1–10

    Google Scholar 

  2. K. Shepard and V. Narayanan, Noise in Deep Submicron Digital Design, in Proc. of the ICCAD, pp. 524–531 (1996).

  3. K. Aingaran, F. Klass, C. M. Kim, C. Amir, J. Mitra, E. You, J. Mohd, and S. K. Dong, Coupling Noise Analysis for VLSI and ULSI Circuits, in Proc. of IEEE ISQED, pp. 485–489 (2000).

  4. Benini L., De Micheli G. (2002). Networks on Chips: A New SoC Paradigm. IEEE Comput. 35(1):70–78

    Google Scholar 

  5. Goossens K., Dielissen J., Radulescu A. (2005). AEthereal Network on Chip: Concepts, Architectures and Implementations. IEEE. Des. Test. Comput. 22(5):414–421

    Article  Google Scholar 

  6. S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg, K. Tiensyrjä, and A. Hemani, A Network on Chip Architecture and Design Methodology, in Proc. of the IEEE Computer Society Annual Symposium on VLSI, pp. 105–112 (2002).

  7. W. Dally, Interconnect-limited VLSI Architecture, in Proc. of the IEEE Conference on Interconnect Technologies, pp. 15–17 (1999).

  8. D. Liu et al., Power Consumption Estimation in CMOS VLSI chips, IEEE J. Solid-State Circ., (29):663–670 (1994).

  9. Hu J., Mărculescu R. (2005). Energy and Performance-aware Mapping for Regular NoC Architectures. IEEE Trans. CAD Integr. Circ. Syst. 24(4):551–562

    Article  Google Scholar 

  10. S. Murali and G. De Micheli, Bandwidth-constrained Mapping of Cores onto NoC architectures, in Proc. of the Conference on Design Automation and Test in Europe, pp. 896–901 (2004).

  11. Bolotin E., Cidon I., Ginosar R., Kolodny A. (2004) QNoC: QoS architecture and Design Process for Networks-on-chip. J. Syst. Arch. 50:105–128

    Article  Google Scholar 

  12. Kermani P., Kleinrock L. (1979). Virtual Cut-Through: A New Computer Communication Switching Technique. Comput. Netw. 3(4):267–286

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Dumitraş and R. Mărculescu, On-chip Stochastic Communication, in Proc. of DATE, pp. 790–795 (2003).

  14. S. Manolache, Fault-tolerant Communication on Network-on-chip, Technical report, Linköping University (2004).

  15. M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, Fault Tolerant Algorithms for Network-on-chip Interconnect, in Proc. of the ISVLSI, pp. 46–51 (2004).

  16. D. Bertozzi, L. Benini, and G. De Micheli, Low Power Error Resilient Encoding for On-chip Data Buses, in Proc. of DATE, pp. 102–109 (2002).

  17. T. T. Ye, L. Benini, and G. De Micheli, Analysis of Power Consumption on Switch Fabrics in Network routers, in Proc. of DAC, pp. 524–529 (2002).

  18. J. C. Palencia Gutiérrez and M. González Harbour, Schedulability Analysis for Tasks with Static and Dynamic Offsets, in Proc. of the 19th IEEE Real Time Systems Symposium, pp. 26–37 (December 1998).

  19. Glover F. (1989). Tabu Search—Part I. ORSA J. Comput. 1(3):190–206

    MATH  Google Scholar 

  20. Alippi C., Galbusera A., Stellini M. (2003). An Application-level Synthesis Methodology for Multidimensional Embedded Processing Systems. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 22(11):1457–1470

    Article  Google Scholar 

  21. Traferro S., Capparelli F., Piazza F., Uncini A. (1999). Efficient Allocation of Power of Two Terms in FIR Digital Filter Design using Tabu Search. IEEE Trans. Comput. Aided Des. Integr. Circ. and Syst. 3:411–414

    Google Scholar 

  22. T. Wild, J. Foag, N. Pazos, and W. Brunnbauer, Mapping and Scheduling for Architecture Exploration of Networking SoCs, in Proc. of the 16th International Conference on VLSI Design, pp. 376–381 (2003).

  23. R. S. Cardoso, M. E. Kreutz, L. Carro, and A. A. Susin, Design Space Exploration on Heterogeneous Network-on-chip, in Proc. of the IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 428–431 (2005).

  24. Hajji O., Brisset S., Brochet P. (2002). Comparing Stochastic Optimization Methods used in Electrical Engineering. IEEE Trans. Syst. Man Cybern 7(6–9):6

    Article  Google Scholar 

  25. Pierre S., Houeto F. (2002). Assigning Cells to Switches in Cellular Mobile Networks Using Taboo Search. IEEE Trans. Syst. Man Cybern 32(3):351–356

    Article  Google Scholar 

  26. B. Krishnamachari and S. B. Wicker, Optimization of Fixed Network Design in Cellular Systems using Local Search Algorithms, in Proc. of the 52nd Vehicular Technology Conference, Vol. 4, pp. 1632–1638 (2000).

  27. Eles P., Peng Z., Kuchcinsky K., Doboli A. (1997). System-level Hardware/software Partitioning Based on Simulated Annealing and Tabu Search. J. Des. Autom. Embed. Sys. 2:5–32

    Article  Google Scholar 

  28. A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi, Simultaneous Communication and Processor Voltage Scaling for Dynamic and Leakage Energy Reduction in Time-constrained Systems, in Proc. of ICCAD, pp. 362–369 (2004).

  29. International Telecommunication Union (ITU). H.263Video coding for low bit rate communication, 2005. http://www.itu.int/publications/itu-t/.

  30. International Organization for Standardization (ISO). ISO/IEC 11172-3:1993 – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 3: Audio, 1993. http://www.iso.org/.

  31. J. Hu and R. Mărculescu, Energy-aware Communication and Task Scheduling for Network-on-chip Architectures Under Real-time Constraints, in Proc. of the Design Automation and Test in Europe Conference, p. 10234 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Manolache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolache, S., Eles, P. & Peng, Z. Fault-aware Communication Mapping for NoCs with Guaranteed Latency. Int J Parallel Prog 35, 125–156 (2007). https://doi.org/10.1007/s10766-006-0029-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-006-0029-7

Keywords

Navigation