Skip to main content
Log in

Biosurfactant Augmented Characterization and Heat Transport Assessment of MWCNT-H2O Nanofluid in Solar Collector

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study presents a comparative analysis of the thermal performance of a flat plate solar collector featuring deionized water and MWCNT-water nanofluid with Gum Arabic, a bio-surfactant. A two-step method is adopted to formulate the nanofluid, which is utilized as a heat transport fluid to improve the thermal performance of a flat plate solar collector. A zeta potential analyzer is employed to characterize the nanofluid. The collector consists of a copper tube heat exchanger for closed-loop cyclic operation. Temperature, pressure and flow rate measurements are carried out. The comparative collector efficiency is investigated at 0.50 and 0.94 lpm flow rates and at MWCNT concentrations of 0.05 and 0.10 wt%, respectively. The thermal conductivity of the MWCNT-water nanofluid with Gum Arabic bio-surfactant exhibited a higher value than that of the SDS surfactant. The absorbed and removed energy parameters at 0.5 lpm for MWCNT-water (0.10 wt%) are found to be increased by 50.42% and 158.75%, respectively, when compared to the corresponding values obtained for DI water. The distribution of collector efficiency with time during the peak hours with maximum solar radiations suggests that a maximum thermal efficiency of 61% can be achieved for 0.94 lpm and 0.10 wt% of MWCNT nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. K.M. Pandey, R. Chaurasiya, A review on analysis and development of solar flat plate collector. Renew. Sustain. Energy Rev. 67, 641–650 (2017)

    Article  Google Scholar 

  2. S.A. Sakhaei, M.S. Valipour, Performance enhancement analysis of the flat plate collectors: a comprehensive review. Renew. Sustain. Energy Rev. 102, 186–204 (2019)

    Article  Google Scholar 

  3. N. Ikmal, S. Azha, H. Hussin, M.S. Nasif, Thermal performance enhancement in flat plate solar collector solar water heater a review. Processes 8, 756 (2020)

    Article  Google Scholar 

  4. W.S. Sarsam, S.N. Kazi, A. Badarudin, A review of studies on using nanofluids in flat-plate solar collectors. Sol. Energy 122, 1245–1265 (2015)

    Article  ADS  Google Scholar 

  5. A.K. Tiwari, P. Ghosh, J. Sarkar, Solar water heating using nanofluids-a comprehensive overview and environmental impact analysis. Int. J. Emerg. Technol. Adv. Eng. 3, 221–224 (2013)

    Google Scholar 

  6. R.P. Garcia, S.R. del Oliveira, V.L. Scalon, Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers. Sol. Energy 182, 278–285 (2019)

    Article  ADS  Google Scholar 

  7. G.K. Poongavanam, D. Sakthivadivel, M. Meikandan, K. Balaji, V.S. Vigneswaran, Thermal performance augmentation of a solar flat plate collector using the shot peening technique. Sci. Technol. Built. Environ. 26, 437–445 (2020)

    Article  Google Scholar 

  8. D. Zhang, J. Li, Z. Gao, L. Wang, J. Nan, Thermal performance investigation of modified flat plate solar collector with dual-function. Appl. Therm. Eng. 108, 1126–1135 (2016)

    Article  Google Scholar 

  9. O.A. Alawi, H.M. Kamar, A.R. Mallah, H.A. Mohammed, S.N. Kazi, N.A. Che Sidik, G. Najafi, Nanofluids for flat plate solar collectors: fundamentals and applications. J. Clean. Prod. 291, 125725 (2021)

    Article  Google Scholar 

  10. Y. Huang, H. Li, J. Hu, C. Xu, X. Wang, Study on enhanced heat transfer and stability characteristics of Al2O3–SiO2/water hybrid nanofluids. Int. J. Thermophys. 44, 1–29 (2023)

    Article  Google Scholar 

  11. M.A. Khairul, K. Shah, E. Doroodchi, R. Azizian, B. Moghtaderi, Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int. J. Heat Mass Transf. 98, 778–787 (2016)

    Article  Google Scholar 

  12. S.N.A. Shah, S. Shahabuddin, M.F.M. Sabri, M.F.M. Salleh, M.A. Ali, N. Hayat, N.A.C. Sidik, M. Samykano, R. Saidur, Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids. Int. J. Heat Mass Transf. 150, 118981 (2020)

    Article  Google Scholar 

  13. H. Tarigonda, D.P.M.D. Shaik, D.R.R. Reddy, G.V.S. Reddy, Experimental investigation on the heat pipe using Al2O3 and CuO hybrid nanofluid. Int. J. Thermophys. 43, 1–16 (2022)

    Article  Google Scholar 

  14. Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta 455, 70–74 (2007)

    Article  Google Scholar 

  15. N.S. Mane, V. Hemadri, Experimental investigation of stability, properties and thermo-rheological behaviour of water-based hybrid CuO and Fe3O4 nanofluids. Int. J. Thermophys. 43, 1–22 (2022)

    Article  ADS  Google Scholar 

  16. S. Almurtaji, N. Ali, J.A. Teixeira, A. Addali, Effect of preparation temperature, surfactant, and nanoparticles concentration on the effective thermophysical properties of multi-walled carbon nanotubes’ nanofluids. Int. J. Thermophys. 42, 1–19 (2021)

    Article  Google Scholar 

  17. P.K. Das, A.K. Mallik, R. Ganguly, A.K. Santra, Synthesis and characterization of TiO2-water nanofluids with different surfactants. Int. Commun. Heat Mass Transf. 75, 341–348 (2016)

    Article  Google Scholar 

  18. S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids. Int. J. Therm. Sci. 44, 367–373 (2005)

    Article  Google Scholar 

  19. A. Asadi, I.M. Alarifi, V. Ali, H.M. Nguyen, An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Ultrason. Sonochem. 58, 104639 (2019)

    Article  Google Scholar 

  20. C. Anushree, J. Philip, Assessment of long term stability of aqueous nanofluids using different experimental techniques. J. Mol. Liq. 222, 350–358 (2016)

    Article  Google Scholar 

  21. M.E. Meibodi, M. Vafaie-Sefti, A.M. Rashidi, A. Amrollahi, M. Tabasi, H.S. Kalal, The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids. Int. Commun. Heat Mass Transf. 37, 319–323 (2010)

    Article  Google Scholar 

  22. T. Maré, S. Halelfadl, S. Van Vaerenbergh, P. Estellé, Unexpected sharp peak in thermal conductivity of carbon nanotubes water-based nanofluids. Int. Commun. Heat Mass Transf. 66, 80–83 (2015)

    Article  Google Scholar 

  23. A. Ghadimi, I.H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp. Therm. Fluid Sci. 51, 1–9 (2013)

    Article  Google Scholar 

  24. H.A. Farhan, S. Nayak, Sanjay, M. Paswan, Numerical analysis with experimental validation for thermal performance of flat plate solar water heater using CuO/distilled water nanofluid in closed loop. J. Mech. Sci. Technol. 37, 2649–2656 (2023).

  25. G. Xia, H. Jiang, R. Liu, Y. Zhai, Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int. J. Therm. Sci. 84, 118–124 (2014)

    Article  Google Scholar 

  26. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr. Appl. Phys. 9, 131–139 (2009)

    Article  ADS  Google Scholar 

  27. M. Mehrali, E. Sadeghinezhad, S.T. Latibari, S.N. Kazi, M. Mehrali, M.N.B.M. Zubir, H.S.C. Metselaar, Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 9, 1–12 (2014)

    Article  Google Scholar 

  28. A. Qamar, Z. Anwar, H. Ali, S. Imran, R. Shaukat, M. Mujtaba Abbas, Experimental investigation of dispersion stability and thermophysical properties of ZnO/DIW nanofluids for heat transfer applications. Alexandria Eng. J. 61, 4011–4026 (2022)

    Article  Google Scholar 

  29. R. Sadeghi, S.G. Etemad, E. Keshavarzi, M. Haghshenasfard, Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluidics 18, 1023–1030 (2015)

    Article  Google Scholar 

  30. W. Rashmi, A.F. Ismail, I. Sopyan, A.T. Jameel, F. Yusof, M. Khalid, N.M. Mubarak, Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum Arabic. J. Exp. Nanosci. 6, 567–579 (2011)

    Article  Google Scholar 

  31. I. Wole-osho, E.C. Okonkwo, S. Abbasoglu, D. Kavaz, Nanofluids in solar thermal collectors: review and limitations. Int. J. Thermophys. 41, 157 (2020)

    Article  ADS  Google Scholar 

  32. S. Choudhary, A. Sachdeva, P. Kumar, Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renew. Energy 147, 1801–1814 (2020)

    Article  Google Scholar 

  33. S. Choudhary, A. Sachdeva, P. Kumar, Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector. Renew. Energy 152, 1160–1170 (2020)

    Article  Google Scholar 

  34. L. Xu, A. Khalifeh, A. Khandakar, B. Vaferi, Numerical investigating the effect of Al2O3-water nanofluids on the thermal efficiency of flat plate solar collectors. Energy Rep. 8, 6530–6542 (2022)

    Article  Google Scholar 

  35. R. Nasrin, M.A. Alim, Thermal performance of nanofluid filled solar flat plate collector. Int. J. Heat Technol. 33, 17–24 (2015)

    Article  Google Scholar 

  36. T.R. Desisa, Experimental and numerical investigation of heat transfer characteristics in solar flat plate collector using nanofluids. Int. J. Thermofluids 18, 100325 (2023)

    Article  Google Scholar 

  37. L.S. Sundar, V. Punnaiah, M.K. Singh, A.M.B. Pereira, A.C.M. Sousa, Solar energy absorbed thermosyphon flat plate collector analysis using Cu/H2O nanofluid—an experimental study. Energy Clim. Chang. 2, 100028 (2021)

    Article  Google Scholar 

  38. R. Kumar, M.A. Hassan, Enhanced energy transport in high-mass flow solar parabolic trough collectors using Fe2O3-laden nanofluids. J. Therm. Anal. Calorim. (2023). https://doi.org/10.1007/s10973-023-12569-4

    Article  Google Scholar 

  39. N. Akram, E. Montazer, S.N. Kazi, M.E.M. Soudagar, W. Ahmed, M.N.M. Zubir, A. Afzal, M.R. Muhammad, H.M. Ali, F.P.G. Márquez, W.S. Sarsam, Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy 227, 120452 (2021)

    Article  Google Scholar 

  40. A.M. Alklaibi, L.S. Sundar, A.C.M. Sousa, Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. Int. Commun. Heat Mass Transf. 120, 105057 (2021)

    Article  Google Scholar 

  41. S.K. Verma, A.K. Tiwari, D.S. Chauhan, Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Convers. Manag. 124, 607–617 (2016)

    Article  Google Scholar 

  42. M.A. Sharafeldin, G. Gróf, O. Mahian, Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy 141, 2436–2444 (2017)

    Article  Google Scholar 

  43. D. Smithz, Thermal Conductivity of Liquids’. 22, 1246–1251.

  44. M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO – ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)

    Article  Google Scholar 

  45. R.J. Moffat, Contributions to the theory of single-sample uncertainty analysis. J. Fluids Eng. Trans. ASME 104, 250–258 (1982)

    Article  Google Scholar 

  46. F. Akbaridoust, M. Rakhsha, A. Abbassi, M. Saffar-avval, Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int. J. Heat Mass Transf. 58, 480–491 (2013)

    Article  Google Scholar 

  47. P. Kanti, K.V. Sharma, R.S. Khedkar, T. ur Rehman, Synthesis, characterization, stability, and thermal properties of graphene oxide based hybrid nanofluids for thermal applications: experimental approach. Diam. Relat. Mater. 128, 109265 (2022)

    Article  ADS  Google Scholar 

  48. S.K. Verma, A.K. Tiwari, S. Tiwari, D.S. Chauhan, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy 167, 231–241 (2018)

    Article  ADS  Google Scholar 

  49. N.K.C. Sint, I.A. Choudhury, H.H. Masjuki, H. Aoyama, Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Sol. Energy 155, 608–619 (2017)

    Article  ADS  Google Scholar 

  50. F. Kiliç, T. Menlik, A. Sözen, Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol. Energy 164, 101–108 (2018)

    Article  ADS  Google Scholar 

  51. E. Arikan, S. Abbasoğlu, M. Gazi, Experimental performance analysis of flat plate solar collectors using different nanofluids. Sustain. 10, (2018).

  52. S. Mukherjee, P.C. Mishra, S.K.S. Parashar, P. Chaudhuri, Role of temperature on thermal conductivity of nanofluids: a brief literature review. Heat Mass Transf. und Stoffuebertragung 52, 2575–2585 (2016)

    Article  ADS  Google Scholar 

  53. S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008)

    Article  Google Scholar 

  54. B. Buonomo, O. Manca, L. Marinelli, S. Nardini, Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng. 91, 181–190 (2015)

    Article  Google Scholar 

  55. H. Zhang, S. Qing, J. Xu, X. Zhang, A. Zhang, Stability and thermal conductivity of TiO2/water nanofluids: a comparison of the effects of surfactants and surface modification. Colloids Surf. A 641, 128492 (2022)

    Article  Google Scholar 

  56. K.H. Almitani, N.H. Abu-Hamdeh, S. Etedali, A. Abdollahi, A.S. Goldanlou, A. Golmohammadzadeh, Effects of surfactant on thermal conductivity of aqueous silica nanofluids. J. Mol. Liq. 327, 114883 (2021)

    Article  Google Scholar 

  57. A.S. Al-Janabi, M. Hussin, M.Z. Abdullah, M.A. Ismail, Effect of CTAB surfactant on the stability and thermal conductivity of mono and hybrid systems of graphene and FMWCNT nanolubricant. Colloids Surf. A 648, 129275 (2022)

    Article  Google Scholar 

  58. A. Amrollahi, A.A. Hamidi, A.M. Rashidi, The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19, 315701 (2008)

    Article  Google Scholar 

  59. Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu, Thermal and rheological properties of carbon nanotube-in-oil dispersions. J. Appl. Phys. 99, 114307 (2006)

    Article  ADS  Google Scholar 

  60. T.K. Hong, H.S. Yang, C.J. Choi, Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 97, 064311 (2005)

    Article  ADS  Google Scholar 

  61. S. Nayerdinzadeh, M. Babadi Soultanzadeh, M. Haratian, A. Zamanimehr, Experimental and numerical evaluation of thermal performance of parabolic solar collector using water/Al2O3 nano-fluid: a case study. Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  62. C.H. Chon, K.D. Kihm, Thermal conductivity enhancement of nanofluids by Brownian motion. J. Heat Transfer 127, 810 (2005)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funding has been received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

RK carried out the experiments and wrote the manuscript. MA conceptualist the problem, analyzed the data and supervised the work.

Corresponding author

Correspondence to M. A. Hassan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Hassan, M.A. Biosurfactant Augmented Characterization and Heat Transport Assessment of MWCNT-H2O Nanofluid in Solar Collector. Int J Thermophys 45, 66 (2024). https://doi.org/10.1007/s10765-024-03364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03364-w

Keywords

Navigation