Skip to main content
Log in

Experimental Investigation of Stability, Properties and Thermo-rheological Behaviour of Water-Based Hybrid CuO and Fe3O4 Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the effect of surfactant on the stability of hybrid nanofluids is explored. The thermal, rheological, and thermo-rheological performance of the three most stable nanofluid samples (one each of CuO, Fe3O4 and CuO + Fe3O4) is studied in detail. Stability analysis is carried out by monitoring the agglomerations in the nanofluids over a period of 20 days. The behaviour of stability indicators (i.e., zeta potential and hydrodynamic diameter) shows that the nanofluid stability is highly dependent on the type of surfactant utilized. It is seen that CuO-water nanofluid shows a maximum 5.47 % enhancement in thermal conductivity compared to its base fluid, while Fe3O4-water and hybrid CuO + Fe3O4-water nanofluids show a maximum enhancement of 3.11 % and 3.95 %, respectively. The results also show that the presence of CTAB surfactant increases the viscosity of the nanofluid. The contact angles for all the nanofluids are lower than that of the base fluid, confirming their superior wettability characteristics. The thermal performance of the nanofluids is also assessed by determining the property enhancement ratio and the figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

CP :

Specific heat (J·kg1 K1)

dp :

Diameter of particle (m)

kB :

Boltzmann constant (m2·kg1·s2·K)

K:

Thermal conductivity (W·m1·°C)

Mo :

Mouromtseff number

T:

Temperature (°C)

UB :

Brownian velocity (m·s1)

vol%:

Volume fraction percent concentration

wt%:

Weight fraction percent concentration

µ:

Viscosity of nanofluid (cP)

ϕ:

Volume fraction of nanoparticles

θ:

Contact angle

\(\rho \) :

Density (kg·m3)

bf:

Basefluid

nf:

Nanofluid

np:

Nanoparticle

r:

Relative

References

  1. S. Jang, S. Choi, Appl. Phy. Lett. 84, 4316 (2004)

    Article  ADS  Google Scholar 

  2. S. Suresh, K. Venkitaraja, P. Selvakumara, M. Chandrasekar, Colloids Surf. A. 388, 41 (2011)

    Article  Google Scholar 

  3. T. Baby, S. Ramaprabhu, J. Appl. Phys. 110, 64325 (2011)

    Article  Google Scholar 

  4. L. Sundar, M. Singh, A. Sousa, Int. Commun. Heat Mass. 52, 73 (2014)

    Article  Google Scholar 

  5. D. Madhesh, R. Parameshwaran, S. Kalaiselvam, Exp. Therm. Fluid Sci. 52, 104 (2014)

    Article  Google Scholar 

  6. D. Zhu, L. Wang, W. Yu, Sci. Rep. 8, 5282 (2018)

    Article  ADS  Google Scholar 

  7. L. Sundar, E. VenkataRamana, M. Graça, M. Singh, A. Sousa, Int. Commun. Heat. Mass. 73, 62 (2016)

    Article  Google Scholar 

  8. H.W. Xian, N. Sidik, R. Saidur, Int. Commun. Heat Mass. 110, 104389 (2020)

    Article  Google Scholar 

  9. L. Felicia, J. Johnson, J. Philip, J. Nanofluids. 3, 1 (2014)

    Article  Google Scholar 

  10. K. Cacua, F. Ordoñez, C. Zapata, B. Herrera, E. Pabón, R. Buitrago-Sierra, Colloid Surf. A. 583, 123960 (2019)

    Article  Google Scholar 

  11. M. Sahooli, S. Sabbaghi, J. Nanofluids. 1, 1 (2013)

    Google Scholar 

  12. A. Asadi, I.M. Alarifi, Sci. Rep. 10, 15182 (2020)

    Article  Google Scholar 

  13. S. Adnan, G. Metin, M. Tayfun, K. Uğur, Ç. Erdem, Exp. Heat Transfer. 31, 450 (2018)

    Article  Google Scholar 

  14. S. Firoozabadi, M. Bonyadi, J. Mol. Liq. 300, 112251 (2020)

    Article  Google Scholar 

  15. S. Vafaei, T. Borca-Tasciuc, M. Podowski, A. Purkayastha, G. Ramanath, P. Ajayan, Nanotechnology 17, 2523 (2006)

    Article  ADS  Google Scholar 

  16. S. Lim, H. Horiuchi, A. Nikolov, D. Wasan, Langmuir 31, 5827 (2015)

    Article  Google Scholar 

  17. M. Hernaiz, V. Alonso, P. Estellé, Z. Wu, B. Sundén, L. Doretti, S. Mancin, N. Çobanoğlu, Z. Karadeniz, N. Garmendia, M. Lasheras-Zubiate, L. Hernández López, R. Mondragón, R. Martínez-Cuenca, S. Barison, A. Kujawska, A. Turgut, A. Amigo, G. Huminic, A. Huminic, M. Kalus, K. Schroth, M. Buschmann, J Colloid Interface Sci. 547, 393 (2019)

    Article  ADS  Google Scholar 

  18. M. Radiom, C. Yang, W. Chan, Proc. SPIE 7522, 4th Int. Conf. Exper Mechanics (2010).

  19. G. Taguchi, Introduction to Quality Engineering (Kraus International Publications, New York, 1986)

    Google Scholar 

  20. A. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, Colloid Surf. A. 286, 92 (2006)

    Article  Google Scholar 

  21. IAPWS R15-11: Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance (2011)

  22. B. Dehkordi, A. Abdollahi, Int. Commun. Heat Mass. 97, 151 (2018)

    Article  Google Scholar 

  23. G. Huminic, A. Huminic, C. Fleacă, F. Dumitrache, I. Morjan, Powder Technol. 367, 347 (2020)

    Article  Google Scholar 

  24. M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass. 75, 262 (2016)

    Article  Google Scholar 

  25. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, New York, 1873)

    MATH  Google Scholar 

  26. M. Sharifpur, T. Ntumba, J. Meyer, Proc. of IMECE2012-85093, November 9, 2012

  27. IAPWS R12-08: Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance (2008)

  28. M. Mehrali, E. Sadeghinezhad, S. Latibari, S. Kazi, M. Mehrali, M. Zubir, H. Metselaar, Nanoscale Res. Lett. 15, 9 (2014)

    Google Scholar 

  29. M. Bahrami, M. Akbari, A. Karimipour, M. Afrand, Exp. Therm. Fluid Sci. 79, 231 (2016)

    Article  Google Scholar 

  30. T. Phuoc, M. Massoudi, Int. J. Therm. Sci. 48, 1294 (2009)

    Article  Google Scholar 

  31. R. Hong, Z. Ren, Y. Han, H. Li, Y. Zheng, J. Ding, Chem. Eng. Sci. 62, 5912 (2007)

    Article  Google Scholar 

  32. A. Kaggwa, J. Carson, M. Atkins, M. Walmsley, Mater. Today Proc. 18, 510 (2019)

    Article  Google Scholar 

  33. J. Wang, G. Li, T. Li, M. Zeng, B. Sundén, J. Therm. Anal. Calorim. 143, 4057 (2021)

    Article  Google Scholar 

  34. S. Najafi, P. Kamranfar, M. Madani, M. Shadadeh, M. Jamialahmadi, J. Mol. Liq. 232, 382 (2017)

    Article  Google Scholar 

  35. L. Sundar, M. Singh, A. Sousa, Int. Commun. Heat Mass. 44, 7 (2013)

    Article  Google Scholar 

  36. A. Abdollahi, D. Karimi, M. Karimipour, Meccanica 53, 3739 (2018)

    Article  Google Scholar 

  37. S. Kumar, G. Sokhal, J. Singh, Int. J. Eng. Res. Appl. 4, 28 (2014)

    Google Scholar 

  38. A. Einstein, Ann. Phys. Leipzig. 19, 289 (1906)

    Article  ADS  Google Scholar 

  39. G. Huminic, A. Huminic, C. Fleacă, F. Dumitrache, I. Morjan, J. Mol. Liq. 321, 114938 (2021)

    Article  Google Scholar 

  40. G. Huminic, A. Huminic, C. Fleacă, F. Dumitrache, I. Morjan, J Mol Liq. 321, 115833 (2021)

    Article  Google Scholar 

  41. N. Mane, V. Hemadri, Proc. ASME 2020 Heat Transf. Summer Conf. July 13–15 (2020).

  42. Z. Qiu, P. Le, P. Li, C. Qin, W. Jiang, P. Zheng, T. Zhang, C. Li, Adv. Mech. Eng. 9, 1 (2017)

    Google Scholar 

  43. R. Prasher, D. Song, J. Wang, P. Phelan, Appl. Phys. Lett. 89, 133108 (2006)

    Article  ADS  Google Scholar 

  44. A. Hamid, W. Azmi, M. Nabil, R. Mamat, K. Sharma, Int. J. Heat Mass. Transfer. 116, 1143 (2018)

    Article  Google Scholar 

  45. I.E. Mouromtsef, Proc. IRE 30, 190 (1942)

    Article  Google Scholar 

  46. R.E. Simons, Calcul. Corner. 12, 10 (2006)

    Google Scholar 

  47. Y. Zhai, L. Li, J. Wang, Z. Li, Powder Technol. 343, 215 (2019)

    Article  Google Scholar 

  48. S. Mukherjee, S. Panda, P. Mishra, P. Chaudhuri, Int. J. Thermophys. 41, 162 (2020)

    Article  ADS  Google Scholar 

  49. B. Pak, Y. Cho, Exp. Heat Transfer. 11–2, 151 (1998)

    Article  ADS  Google Scholar 

  50. Y. Xuan, W. Roetzel, Int. J. Heat Mass Transfer. 43, 3701 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank BITS Pilani K.K. Birla Goa Campus for funding this work under Additional Competitive Grant.

Author information

Authors and Affiliations

Authors

Contributions

NSM: Concept, Experimentation, Data Analysis, Writing—Original Draft. VH: Supervision, Writing—editing.

Corresponding author

Correspondence to Nikhil S. Mane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, N.S., Hemadri, V. Experimental Investigation of Stability, Properties and Thermo-rheological Behaviour of Water-Based Hybrid CuO and Fe3O4 Nanofluids. Int J Thermophys 43, 7 (2022). https://doi.org/10.1007/s10765-021-02938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02938-2

Keywords

Navigation