Skip to main content
Log in

Thermal Performances of Myristic Acid/Bentonite/Graphene Composite Phase Change Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, composite phase change materials (CPCM) containing myristic acid (MA), bentonite, and graphene were prepared by melt blending method, where MA is phase change material (PCM), bentonite is supporting material, and graphene is thermal conductivity enhancer. The CPCM containing 50 wt% MA can still maintain the stable morphology during phase change process. The chemical structure, crystal structure and microstructures of CPCM were examined by Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. Differential scanning calorimeter (DSC) analysis indicate that the melting enthalpy is 94 to 97 J·g−1. Thermogravimetric analysis (TGA) demonstrates good thermal stability of the CPCM. Thermal conductivity of the CPCM with 3 wt% graphene can reach 1.09 W⋅(m⋅K)−1, that is 2.37 times that of MA/bentonite. Experimental results indicate that the CPCM have significant improvement with regard to stability and thermal conductivity as compared to the pristine PCM. Moreover, the CPCM still remain good thermal properties after undergoing 100 thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available upon request to the corresponding author.

References

  1. Y. Li, S.H. Zhou, M.L. Di, W.W. Tan, Q.Z. Zhu, Effect of microstructure on thermal properties of EG/MA shaped composite phase change materials. Int. J. Thermophys. 44, 19 (2022)

    Article  ADS  Google Scholar 

  2. C.Z. Liu, P.B. Hu, Z. Xu, X.T. Ma, Z.H. Rao, Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage. Thermochim. Acta 674, 28–35 (2019)

    Article  Google Scholar 

  3. C. Li, Q. Li, R.H. Ge, X.K. Lu, A novel one-step ultraviolet curing fabrication of myristic acid-resin shape-stabilized composite phase change material for low temperature thermal energy storage. Chem. Eng. J. 458, 141355 (2023)

    Article  Google Scholar 

  4. L.D. Lv, H. Ai, T.R. Chen, W.T. Zhu, Y. Guo, L.J. Dong, S.K. Song, A green, robust, and versatile BN nanosheet unidirectional aerogel encapsulated phase change material for effective thermal management of electronics and solar-thermoelectric conversion. J. Mater. Chem. A 11, 7115–7127 (2023)

    Article  Google Scholar 

  5. M. Ouikhalfan, A. Sarı, G. Hekimoglu, O. Gencel, V.V. Tyagi, Thermal energy storage properties, thermal conductivity, chemical/and thermal reliability of three different organic phase change materials doped with hexagonal boron nitride. Surf. Interfaces 32, 102176 (2022)

    Article  Google Scholar 

  6. S.Y. Liu, J. Han, Q.J. Gao, W.Z. Kang, R.C. Ren, L.N. Wang, D. Chen, D.P. Wu, Lauric acid/bentonite/flake graphite composite as form-stable phase change materials for thermal energy storage. Mater. Express 10, 214–224 (2020)

    Article  Google Scholar 

  7. J.D. Zhou, M. Fang, K. Yang, K.Q. Lu, H. Fei, P. Mu, R.Q. He, A novel MOF/RGO-based composite phase change material for battery thermal management. Appl. Therm. Eng. 227, 120383 (2023)

    Article  Google Scholar 

  8. J.H. Li, J.H. Huang, Z.Q. Liu, M. Cao, R.K. Chen, Y.F. Zhang, Developing ternary composite phase change materials with two different phase change temperatures for battery thermal management. Appl. Therm. Eng. 227, 120357 (2023)

    Article  Google Scholar 

  9. H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, Y. Kou, P. Das, Y.G. Li, X.Y. Zhang, S. Mateti, Y. Chen, Z.S. Wu, Q. Shi, A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nanomicro Lett. 15, 29 (2023)

    ADS  Google Scholar 

  10. A.K. Singh, P.K.S. Rathore, R.K. Sharma, N.K. Gupta, R. Kumar, Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings. Energy 263, 125701 (2023)

    Article  Google Scholar 

  11. J. Nam, S. Yang, B.Y. Yun, S. Kim, Evaluation of thermal/morphological performance of SSPCM based nanoclay: influence of the interlayer microstructure of hydrophilic and hydrophobic. Sol. Energy Mater. Sol. Cells 235, 111479 (2022)

    Article  Google Scholar 

  12. J.R. Vennapusa, A. Konala, P. Dixit, S. Chattopadhyay, Caprylic acid based PCM composite with potential for thermal buffering and packaging applications. Mater. Chem. Phys. 253, 123453 (2020)

    Article  Google Scholar 

  13. M.X. Li, X.J. Wang, L. Odom, K. Bryce, D. Zhao, J.H. Shen, Z.W. Ma, C. Bae, S. Narayan, J. Lian, Three-dimensional hollow reduced graphene oxide tube assembly for highly thermally conductive phase change composites and efficient solar–thermal energy conversion. ACS Appl. Mater. Interfaces 15, 18940–18950 (2023)

    Article  Google Scholar 

  14. C.C. Li, L.J. Fu, J. Ouyang, H.M. Yang, Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci. Rep. 3, 1908 (2013)

    Article  ADS  Google Scholar 

  15. C.C. Li, B.S. Xie, J. Chen, Z.X. He, Z.S. Chen, Y. Long, Emerging mineral-coupled composite phase change materials for thermal energy storage. Energy Convers. Manag. 183, 633–644 (2019)

    Article  Google Scholar 

  16. X. Huang, G. Alva, L.K. Liu, G.Y. Fang, Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form-stable thermal energy storage materials. Sol. Energy Mater. Sol. Cells 166, 157–166 (2017)

    Article  Google Scholar 

  17. C.Z. Chen, X.D. Liu, W.M. Liu, M.F. Ma, A comparative study of myristic acid/bentonite and myristic acid/eudragit L100 form stable phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 127, 14–20 (2014)

    Article  Google Scholar 

  18. F. Jaliliantabar, Thermal conductivity prediction of nano enhanced phase change materials: a comparative machine learning approach. J. Energy Storage 46, 103633 (2022)

    Article  Google Scholar 

  19. C. Tian, Y.Y. Yang, Q. Liu, Y.T. Bai, F.Q. Zhao, L. Huang, N. Yang, X.F. Cai, W.B. Kong, Molecular regulation of flexible composite solid–solid phase change materials with controllable isotropic thermal conductivity for thermal energy storage. ACS Appl. Mater. Interfaces 15, 13165–13175 (2023)

    Article  Google Scholar 

  20. Z.X. Fan, Y.C. Zhao, X.Y. Liu, Y. Shi, D.H. Jiang, Thermal properties and reliabilities of myristic acid-paraffin wax binary eutectic mixture as a phase change material for solar energy storage. RSC Adv. 12, 12303–12309 (2022)

    Article  Google Scholar 

  21. R.Q. Zhang, D.M. Chen, L. Chen, X. Cao, X.B. Li, Y.T. Qu, Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles. J. Energy Storage 51, 104546 (2022)

    Article  Google Scholar 

  22. C. Li, Q. Li, R.H. Ge, Synthesis and investigation of form-stable myristic acid based composite phase change material containing styrene ethylene butylene styrene with enhanced properties for thermal energy storage. J. Energy Storage 52, 104594 (2022)

    Article  Google Scholar 

  23. Y.J. Tang, D. Su, X. Huang, G. Alva, L.K. Liu, G.Y. Fang, Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Appl. Energy 180, 116–129 (2016)

    Article  Google Scholar 

  24. A. Sarı, Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers. Manag. 117, 132–141 (2016)

    Article  Google Scholar 

  25. M.X. Zhao, X. Zhang, X.F. Kong, Preparation and characterization of a novel composite phase change material with double phase change points based on nanocapsules. Renew. Energy 147, 374–383 (2020)

    Article  Google Scholar 

  26. A. Sarı, Thermal energy storage properties and laboratory-scale thermoregulation performance of bentonite/paraffin composite phase change material for energy-efficient buildings. J. Mater. Civ. Eng. 26, 04017001 (2017)

    Article  Google Scholar 

  27. Y. Konuklu, O. Ersoy, Fabrication and characterization of form-stable phase change material/ xonotlite microcomposites. Sol. Energy Mater. Sol. Cells 168, 130–135 (2017)

    Article  Google Scholar 

  28. Y. Luo, S.Y. Xiong, J.T. Huang, F. Zhang, C.C. Li, Y.G. Min, R.T. Peng, Y.D. Liu, Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 231, 111300 (2021)

    Article  Google Scholar 

  29. N. Zhang, H.J. Guo, L. Xiong, H.R. Zhang, X.D. Chen, Preparation and characterization of paraffin/palygorskite shape-stable composite phase change materials for thermal energy storage. J. Energy Storage 34, 102189 (2021)

    Article  Google Scholar 

  30. M. Jafaripour, S.M. Sadrameli, H. Pahlavanzadeh, S.A.H.S. Mousavi, Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems. J. Energy Storage 33, 102155 (2021)

    Article  Google Scholar 

  31. Y.K. Chen, W.Z. Wang, G.Y. Fang, Thermal performance of lauric acid/bentonite/carbon nanofiber composite phase-change materials for heat storage. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-07964-9

    Article  Google Scholar 

  32. A. Sari, A. Biçer, G. Hekimoglu, Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material. J. Compos. Mater. 53, 2967–2980 (2018)

    Article  Google Scholar 

  33. W.Q. Zhan, Y.L. Zhao, Y. Yuan, H. Yi, S.X. Song, Development of 2D-Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity. Sol. Energy Mater. Sol. Cells 201, 110090 (2019)

    Article  Google Scholar 

  34. X.G. Zhang, D. Pan, G.Q. Zhu, Preparation and characterization of form-stable phase-change materials with enhanced thermal conductivity based on nano-Al2O3 modified binary fatty acids and expanded perlite. Energy Build. 271, 112330 (2022)

    Article  Google Scholar 

  35. L. Chen, R.Q. Zhang, X. Cao, X.B. Li, Y.T. Qu, Thermally-induced flexible and thermally conductive enhanced phase change material with 1-hexadecanol as phase change component. Composites A 163, 107205 (2022)

    Article  Google Scholar 

Download references

Funding

This research work was funded by the National Natural Science Foundation of China (Grant No. 51676095).

Author information

Authors and Affiliations

Authors

Contributions

TWF contributed to methodology, investigation, and writing of the original draft. WZW contributed to investigation, reviewing of the manuscript. GYF contributed to supervision, project administration, funding acquisition, and reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Guiyin Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Wang, W. & Fang, G. Thermal Performances of Myristic Acid/Bentonite/Graphene Composite Phase Change Materials. Int J Thermophys 44, 174 (2023). https://doi.org/10.1007/s10765-023-03287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03287-y

Keywords

Navigation