Skip to main content

Advertisement

Log in

A Falling Body High-Pressure Viscometer

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper describes the construction, working equations, and operation of a semi-automated high-pressure falling body viscometer used in the pressure range 0.1 MPa to 400 MPa and at temperatures between 255 K and 368 K. The viscometer employs self-centering sinkers, each a hollow cylinder with a solid hemispherical face. This results in a viscosity-independent sinker calibration constant. With sinkers of different diameters, a broad range of Reynolds numbers is accessible. The dependence of the calibration constants (A) on sinker clearance (c), A ∝ c−3, conforms with theory. It has been used for both high and low viscosity molecular liquids and viscous ionic liquids. It is hoped that a complete description may be of use to others wishing to build and operate such an instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted with permission from K. R. Harris, L. A. Woolf, M. Kanakubo, J. Chem. Eng. Data 50, 1777–1782 (2005), [40]. Copyright 2005 American Chemical Society

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. J.D. Isdale, C.M. Spence, J.S. Tudhope, Physical properties of sea water solutions: viscosity. Desalination 10, 319–328 (1972). https://doi.org/10.1016/S0011-9164(00)80002-8

    Article  Google Scholar 

  2. J.D. Isdale, C.M. Spence, A self-centering falling body viscometer for high pressures, National Engineering Laboratory Report No. 592; (Department of Industry, UK, 1975).

  3. J.H. Dymond, J. Robertson, J.D. Isdale, Transport properties of nonelectrolyte liquid mixtures—III. Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100°C at pressures up to the freezing pressure or 500 MPa. Int. J. Thermophys. 2, 133–154 (1981). https://doi.org/10.1007/BF00503937

    Article  ADS  Google Scholar 

  4. C.J. Schaschke, S. Abid, I. Fletcher, M.J. Heslop, Evaluation of a falling sinker-type viscometer at high pressure using edible oil. J. Food Eng. 87, 51–58 (2008). https://doi.org/10.1016/j.jfoodeng.2007.09.032

    Article  Google Scholar 

  5. M. Zeng, C.J. Schaschke, High pressure falling sinker liquid viscosity determination without supplementary density data: a new approach. Int. J. Chem. Eng. (2009). https://doi.org/10.1155/2009/747592

    Article  Google Scholar 

  6. L. Kulisiewicz, A. Delgado, High-pressure rheological measurement methods: a review. Appl. Rheol. 20, 13018 (2010). https://doi.org/10.3933/ApplRheol-20-13018

    Article  Google Scholar 

  7. S. Bair, High pressure viscometers, in Encyclopedia of Tribology ed. by Q.J. Wang, Y.-W Chung (Springer, Boston, 2013), pp. 1663–1670

  8. A.A.H. Padua, D. Tomida, C. Yokoyama, E.H. Abramson, R.F. Berg, E.F. May, M.R. Moldover, A. Laesecke, Viscometers. In Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids, ed. by M.J. Assael, A.R.H. Goodwin, V. Velisovic, Sir W.A. Wakeham (Royal Society of Chemistry, London, 2014), Chapt. 4.

  9. A. Ahuja, R. Lee, Y.M. Joshi, Advances and challenges in the high-pressure rheology of complex fluids. Adv. Colloid Interface Sci. 294, 102472 (2021). https://doi.org/10.1016/j.cis.2021.102472

    Article  Google Scholar 

  10. M.J. Assael, H.M.T. Avelino, N.K. Dalaouti, J.M.N.A. Fareleira, K.R. Harris, Reference correlation for the viscosity of liquid toluene from 213 to 373 K at pressures to 250 MPa. Int. J. Thermophys. 22, 789–799 (2001). https://doi.org/10.1023/A:1010774932124

    Article  Google Scholar 

  11. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, Reference correlation of the viscosity of toluene from the triple point to 675 K and up to 500 MPa. J. Phys. Chem. Ref. Data 44, 033101 (2015). https://doi.org/10.1063/1.4926955

    Article  ADS  Google Scholar 

  12. M.J. Assael, H. Bauer, N.K. Dalaouti, K.R. Harris, Reference correlation for the viscosity of liquid cyclopentane from 220 to 310 K at pressures to 25 MPa. Int. J. Thermophys. 25, 13–20 (2004). https://doi.org/10.1023/B:IJOT.0000022326.17098.50

    Article  ADS  Google Scholar 

  13. K.A. Tasidou, M.L. Huber, M.J. Assael, Reference correlation for the viscosity of cyclopentane from the triple point to 460 K and up to 380 MPa. J. Phys. Chem. Ref. Data 48, 043101 (2019). https://doi.org/10.1063/1.5128321

    Article  ADS  Google Scholar 

  14. M.J. Assael, S.A. Monogenidou, M.L. Huber, R.A. Perkins, J.V. Sengers, New international formulation for the viscosity of heavy water. J. Phys. Chem. Ref. Data 50, 033102 (2021). https://doi.org/10.1063/5.0048711

    Article  ADS  Google Scholar 

  15. M.J.P. Comuñas, X. Paredes, F.M. Gaciño, J. Fernández, J.-P. Bazile, C. Boned, J.-L. Daridon, G. Galliero, J. Pauly, K.R. Harris et al., Reference correlation of the viscosity of squalane from 273 to 373 K at 0.1 MPa. J. Phys. Chem. Ref. Data 42, 033101 (2013). https://doi.org/10.1063/1.4812573

    Article  ADS  Google Scholar 

  16. S.K. Mylona, M.J. Assael, M.J.P. Comuñas, X. Paredes, F.M. Gaciño, J. Fernández, J.-P. Bazile, C. Boned, J.-L. Daridon, G. Galliero et al., Reference correlations for the density and viscosity of squalane from 273 to 473 K at pressures to 200 MPa. J. Phys. Chem. Ref. Data 43, 013104 (2014). https://doi.org/10.1063/1.4863984

    Article  ADS  Google Scholar 

  17. X. Paredes, C.S.G.P. Queiros, F.J.V. Santos, A.F. Santos, M.S.C.S. Santos, M.J.V. Lourenço, C.A. Nieto de Castro, Thermophysical properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][(CF3SO2)2N]-new data, reference data, and reference correlations. J. Phys. Chem. Ref. Data 49, 043101 (2020). https://doi.org/10.1063/5.0023160

    Article  ADS  Google Scholar 

  18. M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, Reference values and reference correlations for the thermal conductivity and viscosity of fluids. J. Phys. Chem. Ref. Data 47, 021501 (2018). https://doi.org/10.1063/1.5036625

    Article  ADS  Google Scholar 

  19. R. Malhotra, W.E. Price, A.J. Easteal, L.A. Woolf, Thermodynamic and transport properties of 1,2-dichloroethane. Int. J. Thermophys. 11, 835–861 (1990). https://doi.org/10.1007/BF00503578

    Article  ADS  Google Scholar 

  20. A.J. Easteal, L.A. Woolf, F.L. Wilson, A simple high-pressure sample cell for diffusion coefficient measurements by the spin-echo technique. J. Magn. Reson. 54, 158–160 (1983). https://doi.org/10.1016/0022-2364(83)90157-9

    Article  ADS  Google Scholar 

  21. K.R. Harris, L.A. Woolf, The pressure and temperature dependence of the self diffusion coefficient of ordinary water and oxygen-18 water. J. Chem. Soc. Faraday Trans. I 76, 377–385 (1980). https://doi.org/10.1039/F19807600377

    Article  Google Scholar 

  22. K.R. Harris, H.N. Lam, E. Raedt, A.J. Easteal, W.E. Price, L.A. Woolf, The temperature and density dependences of the self-diffusion coefficient and the shear viscosity of liquid trichloromethane. Mol. Phys. 71, 1205–1221 (1990). https://doi.org/10.1080/00268979000102441

    Article  ADS  Google Scholar 

  23. K.R. Harris, L.A. Woolf, M. Kanakubo, T. Rüther, Transport properties of N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. J. Chem. Eng. Data 56, 4672–4685 (2011). https://doi.org/10.1021/je2006049

    Article  Google Scholar 

  24. K.R. Harris, H-bonding in 2,2,2-trifluoroethanol: application of the Stokes-Einstein-Sutherland equation to self-diffusion and viscosity at high pressures. J. Chem. Eng. Data 63, 1443–1453 (2018). https://doi.org/10.1021/acs.jced.7b01030

    Article  Google Scholar 

  25. K.R. Harris, M. Kanakubo, D. Kodama, T. Makino, Y. Mizuguchi, Y. Suzuki, T. Watanabe, Temperature and pressure dependence of the transport properties of the ionic liquid triethyloctylphosphonium bis(trifluoromethylsulfonyl)amide, [P222,8][Tf2N]. J. Chem. Eng. Data 68, 549–560 (2023). https://doi.org/10.1021/acs.jced.2c00713

    Article  Google Scholar 

  26. P.L.M. Heydemann, Electrical feedthrough for pressures to 10 kbar. Rev. Sci. Instrum. 38, 558–559 (1967). https://doi.org/10.1063/1.1720763

    Article  ADS  Google Scholar 

  27. R. Malhotra, L.A. Woolf, An automated volumometer: thermodynamic properties of 1,1-dichloro-2,2,2-trifluoromethane (R123) for temperatures of 278.15 to 338.15 K and pressures of 0.1 to 380 MPa. Int. J. Thermophys. 14, 1021–1038 (1993). https://doi.org/10.1007/BF00505673

    Article  ADS  Google Scholar 

  28. R.D. Trengove, H.L. Robjohns, T.N. Bell, M.L. Martin, P.J. Dunlop, Thermal-diffusion factors at 300 K for 7 binary noble-gas systems containing helium or neon. Physica A 108, 488–501 (1981). https://doi.org/10.1016/0378-4371(81)90144-8

    Article  ADS  Google Scholar 

  29. K.R. Harris, R. Malhotra, L.A. Woolf, Temperature and density dependence of the viscosity of octane and toluene. J. Chem. Eng. Data 42, 1254–1260 (1997). https://doi.org/10.1021/je970105q

    Article  Google Scholar 

  30. K.R. Harris, L.A. Woolf, Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J. Chem. Eng. Data 49, 1064–1069 (2004). https://doi.org/10.1021/je049918m

    Article  Google Scholar 

  31. A. Harlow, Thesis (Imperial College of Science and Technology, London, 1967). (Appendix 1)

    Google Scholar 

  32. R. Scott, Thesis (Imperial College of Science and Technology, London, 1959). (Chapter 2)

    Google Scholar 

  33. J.B. Cappi, Thesis (Imperial College of Science and Technology, London, 1964). (Chapter 4)

    Google Scholar 

  34. J.H. Dymond, K.J. Young, J.D. Isdale, Transport properties of nonelectrolyte liquid mixtures—II. Viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100 °C at pressures up to the freezing pressure or 500 MPa. Int. J. Thermophys. 1, 345–373 (1980). https://doi.org/10.1007/BF00516563

    Article  ADS  Google Scholar 

  35. J. Lohrenz, F. Kurata, Design and evaluation of a new body for falling cylinder viscometers. AIChEJ 8, 190–193 (1962). https://doi.org/10.1002/aic.690080212

    Article  ADS  Google Scholar 

  36. J.B. Irving, The effect of nonvertical alignment on the performance of a falling-cylinder viscometer. J. Phys. D 5, 214–224 (1972). https://doi.org/10.1088/0022-3727/5/1/330

    Article  ADS  Google Scholar 

  37. D. Ducoulombier, F. Lazar, H. Saint-Cuirons, P. Xans, Falling body viscometer for high-pressure viscosity measurements. Rev. Phys. Appl. 20, 735–740 (1985). https://doi.org/10.1051/rphysap:019850020010073500

    Article  Google Scholar 

  38. S. Bair, A routine high-pressure viscometer for accurate measurements to 1 GPa. Tribol. Trans. 47, 356–360 (2004). https://doi.org/10.1080/05698190490455582

    Article  Google Scholar 

  39. J. Lohrenz, G.W. Swift, F. Kurata, An experimentally verified theoretical study of the falling cylinder viscometer. AIChEJ 6, 547–550 (1960). https://doi.org/10.1002/aic.690060408

    Article  ADS  Google Scholar 

  40. K.R. Harris, M. Kanakubo, L.A. Woolf, Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007). https://doi.org/10.1021/je700370z

    Article  Google Scholar 

  41. M.E. Kandil, K.R. Harris, A.R.H. Goodwin, K. Hsu, K.N. Marsh, Measurement of the viscosity and density of a reference fluid with a nominal viscosity at T = 298 K and p = 0.1 MPa of 290 mPa·s, at temperatures between (273 and 423) K and pressures below 275 MPa. J. Chem. Eng. Data 51, 2185–2196 (2006). https://doi.org/10.1021/je060295h

    Article  Google Scholar 

  42. M.J.P. Comuñas, X. Paredes, F.M. Gaciño, J. Fernández, J.P. Bazile, C. Boned, J.L. Daridon, G. Galliero, J. Pauly, K.R. Harris, Viscosity measurements for squalane at high pressures to 350 MPa from T = (293.15 to 373.15) K. J. Chem. Thermodyn. 69, 201–208 (2014). https://doi.org/10.1016/j.jct.2013.10.001

    Article  Google Scholar 

  43. K.R. Harris, S. Bair, Temperature and pressure dependence of the viscosity of diisodecyl phthalate at temperatures between (0 and 100)oC and at pressures to 1 GPa. J. Chem. Eng. Data 52, 272–278 (2007). https://doi.org/10.1021/je060382+

    Article  Google Scholar 

  44. J.H. Dymond, M.A. Awan, N.F. Glen, J.D. Isdale, Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene+ hexane from 25 to 100°C at pressures up to 500 MPa. Int. J. Thermophys. 12, 275–287 (1991). https://doi.org/10.1007/BF00500752

    Article  ADS  Google Scholar 

  45. S.C. Vant, Thesis (University of Strathclyde, Glasgow, 2002)

    Google Scholar 

  46. J.M. Paton, C.J. Schaschke, Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer. Chem. Eng. Res. Des. 87, 1520–1526 (2009). https://doi.org/10.1016/j.cherd.2009.04.007

    Article  Google Scholar 

  47. C.J. Schaschke, Experimental viscosity measurements of biodiesels at high pressure. Chem. Ind. Chem. Eng. Q. 22, 453–460 (2016). https://doi.org/10.2298/CICEQ160212015S

    Article  Google Scholar 

  48. Y.L. Sen, E. Kiran, A new experimental system to study the temperature and pressure dependence of viscosity, density, and phase behavior of pure fluids and solutions. J. Supercrit. Fluids 3, 91–99 (1990). https://doi.org/10.1016/0896-8446(90)90013-C

    Article  Google Scholar 

  49. E. Kiran, Y.L. Sen, High-pressure viscosity and density of n-alkanes. Int. J. Thermophys. 13, 411–442 (1992). https://doi.org/10.1007/BF00503880

    Article  ADS  Google Scholar 

  50. P. Daugé, A. Baylaucq, L. Marlin, C. Boned, Development of an isobaric transfer viscometer operating up to 140 MPa. Application to a methane + decane system. J. Chem. Eng. Data 46, 823–830 (2001). https://doi.org/10.1021/je000371v

    Article  Google Scholar 

  51. M.J.P. Comuñas, A. Baylaucq, C. Boned, J. Fernández, Dynamic viscosity for HFC-134a + polyether mixtures up to 373.15 K and 140 MPa at low polyether concentration. Measurements and modeling. Ind. Eng. Chem. Res. 43, 804–814 (2004). https://doi.org/10.1021/ie030574n

    Article  Google Scholar 

  52. C.K. Zéberg-Mikkelsen, A. Baylaucq, G. Watson, C. Boned, High-pressure viscosity measurements for the ethanol + toluene binary system. Int. J. Thermophys. 26, 1289–1302 (2005). https://doi.org/10.1007/s10765-005-8089-2

    Article  ADS  Google Scholar 

  53. F.M. Gaciño, X. Paredes, M.J.P. Comuñas, J. Fernández, Effect of the pressure on the viscosities of ionic liquids: experimental values for 1-ethyl-3-methylimidazolium ethylsulfate and two bis(trifluoromethyl-sulfonyl)imide salts. J. Chem. Thermodyn. 54, 302–309 (2012). https://doi.org/10.1016/j.jct.2012.05.007

    Article  Google Scholar 

  54. M.L. Huber, A. Laesecke, H.W. Xiang, Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equil. 224, 263–270 (2004). https://doi.org/10.1016/j.fluid.2004.07.012

    Article  Google Scholar 

Download references

Acknowledgments

Many people have contributed to the design, construction, and operating procedures of this viscometer. Initial construction at ANU: the late Dr Lawrie Woolf (design), the late Mr Lindsay Wilson (design, machining, and construction), Mr Peter Smith (programming and electronics), and Dr Rakesh Malhotra (programming). Dr Jim Isdale (NEL, Glasgow, Scotland), Dr John Dymond (University of Glasgow), and the late Dr Alan Easteal (University of Auckland and ANU) also contributed to the design and operational procedures. Modifications at UNSW Canberra: Messrs Ken Piper and Ray Lawson (machining); Mr Kerry Richens (programming and electronics), the late Dr Peter Dunlop and Mr Keith Shepherdson [(Department of (Physical and Inorganic) Chemistry, University of Adelaide: temperature control unit], and Mr Hans Lawatsch (electronics). I am very grateful to Dr John Dymond for obtaining excerpts from the thesis of Dr Roberta Scott, held by Queen Mary College, University of London and to him and Dr John Robertson, formerly of the University of Glasgow, for commenting on a draft of the manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KH is the single author of this paper.

Corresponding author

Correspondence to Kenneth R. Harris.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4295 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, K.R. A Falling Body High-Pressure Viscometer. Int J Thermophys 44, 184 (2023). https://doi.org/10.1007/s10765-023-03285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03285-0

Keywords

Navigation