Skip to main content
Log in

Thickness and Roughness Effect of Pr2NiO4+δ Coating on the Normal Spectral Emittance

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pr2NiO(4+δ) coatings of rare earth nickelate oxide were prepared through RF magnetron co-sputtering, combined with an appropriate heat treatment. The study focused on optimizing the growth conditions to enhance the thermal emittance of the coatings, taking into account the influence of thickness and roughness. The research findings revealed interesting insights. Firstly, by analyzing room temperature infrared reflectivity and studying the temperature dependence of the normal spectral emittance in the range of 500 cm−1 to 5500 cm−1, it was observed that the total emittance increased as the coating thickness increased. However, this increase tended to approach a saturation value at higher thicknesses. Additionally, the study demonstrated that a coating thickness of 2.8 μm was sufficient to effectively shield the substrate's infrared thermal response. This suggests the potential application of these coatings for thermal management purposes. Furthermore, the influence of roughness on the emittance was predominantly observed in the spectral range of 1200 cm−1 to 3600 cm−1. This finding highlights the importance of considering surface roughness when designing coatings for optimal thermal properties. In summary, the research provided valuable insights into the growth conditions and the impact of thickness and roughness on the thermal emittance of Pr2NiO4+δ coatings. These findings contribute to the development of improved materials for thermal management and related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. R.K. Bird, T.A. Wallace, S.N. Sankaran, J. Spacecr. Rocket. 41, 213–220 (2004)

    Article  ADS  Google Scholar 

  2. T.D. Swanson, G.C. Birur, Appl. Therm. Eng. 23, 1055–1065 (2003). https://doi.org/10.1016/S1359-4311(03)00036-X

    Article  Google Scholar 

  3. A. J. Skoog, J. A. Murphy, J-M. Jasany, A. D. Gastrich, T.L. Manning, Use in HIRSS Applications, 2008.

  4. S. Fan, Nat. Nanotechnol. 9, 92–93 (2014). https://doi.org/10.1038/nnano.2014.9

    Article  ADS  Google Scholar 

  5. K.A. Arpin, M.D. Losego, A.N. Cloud, H. Ning, J. Mallek, N.P. Sergeant, L. Zhu, Z.B. Kalanyan, G.N. Parsons, Nat. Commun. (2013). https://doi.org/10.1038/ncomms3630

    Article  Google Scholar 

  6. L. Ferguson, L. Fraas, in Third NREL conference on thermophotovoltaic generation of electricity, vol. 401 (AIP Publishing, 1997), pp. 169–179

  7. X. He, Y. Li, L. Wang, Y. Sun, S. Zhang, High emissivity coatings for high temperature application: progress and prospect. Thin Solid Films (2009). https://doi.org/10.1016/j.tsf.2009.03.175

    Article  Google Scholar 

  8. J. Rodriguez-Carvajal, M.T. Fernandez-Diaz, J.L. Martinez, Neutron diffraction study on structural and magnetic properties of La2NiO4. J. Phys. 3, 3215 (1991)

    Google Scholar 

  9. M.T. Fernandez-Diaz, J.L. Martinez, J. Rodriguez-Carvajal, J. Beille, B. Martinez, X. Obradors, P. Odier, Metamagnetism in single-crystal pr2nio4. Phys. Rev. B 47, 5834–5840 (1993). https://doi.org/10.1103/PhysRevB.47.5834

    Article  ADS  Google Scholar 

  10. S.M. Aspera, M. Sakaue, T.D.K. Wungu, M. Alaydrus, T.P.T. Linh, H. Kasai, M. Nakanishi, T. Ishihara, Analysis of structural and electronic properties of Pr2Nio4 through first-principles calculations. J. Phys. 24, 405504 (2012)

    Google Scholar 

  11. J.-M. Bassat, M. Burriel, O. Wahyudi, R. Castaing, M. Ceretti, P. Veber, I. Weill, A. Villesuzanne, J.-C. Grenier, W. Paulus, J.A. Kilner, Anisotropic oxygen diffusion properties in Pr2NiO4+δ and Nd2NiO4+δ single crystals. J. Phys. Chem. C 117, 26466–26472 (2013). https://doi.org/10.1021/jp409057k

    Article  Google Scholar 

  12. C. Allancon, J. Rodriguez-Carvajal, M. Fernandez-Diaz, P. Odier, J. Bassat, J. Loup, J. Martinez, Crystal structure of the high temperature phase of oxidised Pr2NiO4+δ. Z. Phys. B 100, 85–90 (1996)

    Article  ADS  Google Scholar 

  13. F. Gervais, R.P. Lobo, C. Allançon, N. Pellerin, J.-M. Bassat, J.-P. Loup, P. Odier, Analysis of infrared reflectivity of Pr2NiO4 single crystal. Solid State Commun. 88, 245–249 (1993). https://doi.org/10.1016/0038-1098(93)90751-8

    Article  ADS  Google Scholar 

  14. B. Rousseau, M. Chabin, P. Echegut, A. Sin, F. Weiss, P. Odier, High emissivity of a rough pr2nio4 coating. Appl. Phys. Lett. 79, 3633–3635 (2001). https://doi.org/10.1063/1.1420780

    Article  ADS  Google Scholar 

  15. N. Poirot-Reveau, P. Odier, P. Simon, F. Gervais, Signature of stripes in the optical conductivity of La2NiO4.11. Phys. Rev. B 65, 094503 (2002). https://doi.org/10.1103/PhysRevB.65.094503

    Article  ADS  Google Scholar 

  16. F. Gervais, Optical properties of thin films. Mater. Sci. Eng. R 39, 29–92 (2002)

    Article  Google Scholar 

  17. E.Y. Sako, H.D. Orsolini, M. Moreira, D. De Sousa Meneses, V.C. Pandolfelli, Emissivity of spinel and titanate structures aiming at the development of industrial high-temperature ceramic coatings. J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.11.010

    Article  Google Scholar 

  18. Y. Ma, Y. Chen, Z. Wang, H. Liu, Y. Li, X. Wang, H. Wei, G.J. Cheng, Controllable near-infrared reflectivity and infrared emissivity with substitutional iron-doped orthorhombic YMnO3 coatings. Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.06.063

    Article  Google Scholar 

  19. M. Chabin, S.M. De, G. Duneau, P. Echegut, M. Malki, P. Odier, B. Rousseau, European Patent 0967835A1, 1999

  20. B. Rousseau, D. De Sousa Meneses, P. Echegut, J.-F. Thovert, Int. J. Therm. Sci. 50, 178–186 (2011)

    Article  Google Scholar 

  21. M.T. Ta, J.-Y. Rolland, P. Echegut, B. Rousseau, M. Zaghrioui, F. Giovannelli, H. Gomart, P. Lenormand, F. Ansart, Appl. Phys. Lett. 97, 181917 (2010)

    Article  ADS  Google Scholar 

  22. A. Sediri, M. Zaghrioui, A. Barichard, C. Autret, B. Negulescu, L. Del Campo, P. Echegut, P. Laffez, Thin Solid Films 600, 131–135 (2016). https://doi.org/10.1016/j.tsf.2016.01.023

    Article  ADS  Google Scholar 

  23. D. De Sousa Meneses, P. Melin, L. Del Campo, L. Cosson, P. Echegut, Infrared Phys. Technol. 69, 96–101 (2015)

    Article  ADS  Google Scholar 

  24. J. Rodriguez-Carvajal, in Satellite meeting on powder diffraction of the XV congress of the IUCr, vol. 127 (Toulouse, 1990)

  25. J.D. Sullivan, D.J. Buttrey, D.E. Cox, J. Hriljac, J. Solid State Chem. 94, 337–351 (1991). https://doi.org/10.1016/0022-4596(91)90200-2

    Article  ADS  Google Scholar 

  26. K.Z. Rajab, M. Naftaly, E.H. Linfield, J.C. Nino, D. Arenas, D. Tanner, R. Mittra, M. Lanagan, J. Microelectron. Electron. Packag. 5, 2–7 (2008). https://doi.org/10.4071/1551-4897-5.1.1

    Article  Google Scholar 

  27. F. Gervais, R.P. Lobo, C. Allançon, N. Pellerin, J.M. Bassat, J.P. Loup, P. Odier, Solid State Commun. 88, 245–249 (1993). https://doi.org/10.1016/0038-1098(93)90751-8

    Article  ADS  Google Scholar 

  28. J.M. Bassat, F. Gervais, P. Odier, J.P. Loup, Mater. Sci. Eng. B 3, 507–514 (1989)

    Article  Google Scholar 

  29. J.F. Brun, F.L. del Campo, D. De Sousa Meneses, P. Echegut, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4846077

    Article  Google Scholar 

  30. L. del Campo, D. De Sousa Meneses, A. Blin, B. Rousseau, E. Véron, M. Balat-Pichelin, P. Echegut, J. Am. Ceram. Soc. 94, 1859–1864 (2011)

    Article  Google Scholar 

  31. D.M. Eagles, R.P.S.M. Lobo, F. Gervais, Phys. Rev. B 52, 6440–6450 (1995). https://doi.org/10.1103/PhysRevB.52.6440

    Article  ADS  Google Scholar 

  32. M.T. Ta, B. Rousseau, L. del Campo, J.Y. Rolland, S. Touchefeu, E. Veron, D. De Sousa Meneses, P. Echegut, P. Lenormand, F. Ansart, J. Am. Ceram. Soc. 94, 2535–2541 (2011). https://doi.org/10.1111/j.1551-2916.2011.04446.x

    Article  Google Scholar 

  33. B. Rousseau, PhD thesis, 2001

  34. F. Tang, T. Parker, G.C. Wang, T.M. Lu, J. Phys. D 40, R427 (2007)

    Article  ADS  Google Scholar 

  35. H. Gomart, Modélisation des propriétés Thermo-Radiatives de revêtements à haute efficacité énergétique. Université d’Orléans, CNRS-CEMHTI, 2008

Download references

Acknowledgements

The authors would like to thank Dr. Vinh Ta-Phuoc from GREMAN laboratory in Tours, France, for his contribution on the FT-FIR measurements. We also acknowledge the CeRTEM research group in Tours, France, for providing access to profilometry equipments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AS: samples synthesis, X-ray diffraction experiments, electron microscopy experiment, infrared reflectivity, spectral emissivity, general discussion. LC: infrared reflectivity supervision. LC: infrared reflectivity experiment. PE: spectral emissivity supervision. MZ: Raman scattering supervision, general supervision. PL: sample synthesis supervision, general supervision.

Corresponding author

Correspondence to P. Laffez.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sediri, A., del Campo, L., Cosson, L. et al. Thickness and Roughness Effect of Pr2NiO4+δ Coating on the Normal Spectral Emittance. Int J Thermophys 44, 172 (2023). https://doi.org/10.1007/s10765-023-03278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03278-z

Keywords

Navigation