Skip to main content

Advertisement

Log in

Renewed Measurements of Carbon Dioxide Hydrate Phase Equilibrium

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper investigates the phase equilibrium conditions in the carbon dioxide hydrate forming system. Carbon dioxide hydrate can be utilized for carbon capture, salt manufacture, carbonated solid foods and tritium water concentration, so the phase equilibrium conditions have been substantially reported so far. However, the data from previous studies were inconsistent with each other, such as there is a difference of 1.0 K in the phase equilibrium temperature at 2 MPa. In this study, the newly three-phase (water rich liquid + hydrate + guest rich vapor) equilibrium conditions in the carbon dioxide hydrate forming system were measured at twenty different temperature conditions within the range of (271.9-282.7) K in the two different laboratories. The six pairs of the three-phase equilibrium condition data measured under equivalent pressure conditions were consistent within mutual uncertainties. The internal consistency of the data measured in this study was evaluated by the Clausius-Clapeyron equation. The data measured in this study existed within the uncertainty range of the data from several previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data and materials used in this study are available upon request to the corresponding author.

References

  1. H. Kiyokawa, S. Horii, S. Alavi, R. Ohmura, Fuel. 278, 118330 (2020). https://doi.org/10.1016/j.fuel.2020.118330

    Article  Google Scholar 

  2. M. Maruyama, S. Kao, H. Kiyokawa, S. Takeya, R. Ohmura, Energy Fuels. 36(18), 10601–10609 (2022). https://doi.org/10.1021/acs.energyfuels.2c01355

    Article  Google Scholar 

  3. B. Castellani, F. Rossi, M. Filipponi, A. Nicolini, Biomass Bioenergy. 70, 330–338 (2014). https://doi.org/10.1016/j.biombioe.2014.08.026

    Article  Google Scholar 

  4. M. Tanaka, K. Tsugane, D. Suga, S. Tomura, R. Ohmura, K. Yasuda, ACS Sustainable Chem. Eng. 9, 9078–9084 (2021). https://doi.org/10.1021/acssuschemeng.1c023

    Article  Google Scholar 

  5. A. Gibo, S. Nakano, S. Shiraishi, S. Takeya, S. Tomura, R. Ohmura, K. Yasuda, Desalination. 539, 115937 (2022). https://doi.org/10.1016/j.desal.2022.115937

    Article  Google Scholar 

  6. M. Maruyama, S. Tomura, K. Yasuda, R. Ohmura, J. Clean. Prod. 383, 135425 (2023). https://doi.org/10.1016/j.jclepro.2022.135425

    Article  Google Scholar 

  7. S. Shigehara, R. Ohmura, Food Chem. 371, 131369 (2022). https://doi.org/10.1016/j.foodchem.2021.131369

    Article  Google Scholar 

  8. T.B. Peters, J.L. Smith, J.G. Brisson, J. Food Eng. 100(4), 669–677 (2010). https://doi.org/10.1016/j.jfoodeng.2010.05.017

    Article  Google Scholar 

  9. S. Nakamura, T. Awata, H. Kiyokawa, H. Ito, R. Ohmura, Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.142979

    Article  Google Scholar 

  10. S. Adisasmito, R.J. Frank, E.D. Sloan, J. Chem. Eng. Data. 36, 68–71 (1991). https://doi.org/10.1021/je00001a020

    Article  Google Scholar 

  11. K. Yasuda, R. Ohmura, J. Chem. Eng. Data. 53(9), 2182–2188 (2008). https://doi.org/10.1021/je800396v

    Article  Google Scholar 

  12. Y. Nema, R. Ohmura, I. Senaha, K. Yasuda, Fluid Phase Equilib. 441, 49–53 (2017). https://doi.org/10.1016/j.fluid.2016.12.014

    Article  Google Scholar 

  13. M.K. Chun, J.H. Yoon, H. Lee, J. Chem. Eng. Data. 41(5), 1114–1116 (1996). https://doi.org/10.1021/je9601218

    Article  Google Scholar 

  14. K. Ohgaki, Y. Makihara, K. Takano, J. Chem. Eng. Japan. 26(5), 558–564 (1993). https://doi.org/10.1252/jcej.26.558

    Article  Google Scholar 

  15. M.M. Mooijer-van den, R. Heuvel, C.J. Witteman, Peters, Fluid Phase Equilib. 182, 97–110 (2001). https://doi.org/10.1016/s0378-3812(01)00384-3

    Article  Google Scholar 

  16. S.S. Fan, T.M. Guo, J. Chem. Eng. Data. 44(4), 829–832 (1999). https://doi.org/10.1021/je990011b

    Article  Google Scholar 

  17. H.J. Ng, D.B. Robinson, Fluid Phase Equilib. 21(1–2), 145–155 (1985). https://doi.org/10.1016/0378-3812(85)90065-2

    Article  Google Scholar 

  18. Y.T. Seo, H. Lee, J.H. Yoon, J. Chem. Eng. Data. 46(2), 381–384 (2001). https://doi.org/10.1021/je000237a

    Article  Google Scholar 

  19. T. Maekawa, Fluid Phase Equilib. 303(1), 76–79 (2011). https://doi.org/10.1016/j.fluid.2011.01.011

    Article  Google Scholar 

  20. M. Wang, Z.G. Sun, X.H. Qiu, M.G. Zhu, C.H. Li, A.J. Zhang, J. Li, C.M. Li, H.F. Huang, J. Chem. Eng. Data. 62(2), 812–815 (2017). https://doi.org/10.1021/acs.jced.6b00848

    Article  Google Scholar 

  21. M.L. Dai, Z.G. Sun, J. Lim, H.F. Huang, J. Chem. Thermodyn. 148 (2020). https://doi.org/10.1016/j.jct.2020.106144

  22. S.S. Fan, G.J. Chen, Q.L. Ma, T.M. Guo, Chem. Eng. J. 78, 173–178 (2000). https://doi.org/10.1016/S1385-8947(00)00157-1

    Article  Google Scholar 

  23. A.H. Mohammadi, R. Anderson, B. Tohidi, AIChE J. 51(10), 2825–2833 (2005). https://doi.org/10.1002/aic.10526

    Article  Google Scholar 

  24. C.H. Unruh, D.L. Katz, Trans. AIME. 4, 83–86 (1949). https://doi.org/10.2118/949983-G

    Article  Google Scholar 

  25. P.F. Ferrari, A.Z. Guembaroski, M.A.M. Neto, R.E.M. Morales, A.K. Sum, Fluid Phase Equilib. 412, 176–183 (2016). https://doi.org/10.1016/j.fluid.2015.10.008

    Article  Google Scholar 

  26. K.M. Sabil, G. Witkamp, C.J. Peters, Fluid Phase Equilib. 284, 38–43 (2009). https://doi.org/10.1016/j.fluid.2009.06.006

    Article  Google Scholar 

  27. P. Englezos, S. Hall, Can. J. Chem. Eng. 72, 887 (1994). https://doi.org/10.1002/cjce.5450720516

    Article  Google Scholar 

  28. K. Tezuka, R. Shen, T. Watanabe, S. Takeya, S. Alavi, J.A. Ripmeester, R. Ohmura, Chem. Com. 49, 505–507 (2013). https://doi.org/10.1039/c2cc37717a

    Article  Google Scholar 

  29. B. Tohidi, R.W. Burgass, A. Danesh, K.K. Ostergaard, A.C. Todd, Ann. N Y Acad. Sci. 912(1), 924–931 (2000). https://doi.org/10.1111/j.1749-6632.2000.tb06846.x

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. and R.O. conceived the idea of the study. A.G., S.S., and H.I. are conducted the measurements and interpreted the data. H.I. wrote the main manuscript text. K.Y. and R.O. provided supervision and made corrections to the manuscript. All authors reviewed it.

Corresponding author

Correspondence to Ryo Ohmura.

Ethics declarations

Compering Interest

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Gibo, A., Shiraishi, S. et al. Renewed Measurements of Carbon Dioxide Hydrate Phase Equilibrium. Int J Thermophys 44, 128 (2023). https://doi.org/10.1007/s10765-023-03241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03241-y

Keywords

Navigation