Skip to main content
Log in

Thermophysical Properties of Liquid Zirconia Measured by Aerodynamic Levitation at High Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the frame of severe accident modeling, the knowledge of the so-called-corium thermophysical properties is crucial to obtain reliable simulation. In this work, an aerodynamic levitation technique was used to measure simultaneously surface tension, density and viscosity of liquid zirconia, one phase of corium, at temperature ranging from melting point 2 715 °C to 2 900 °C using acoustic excitation. The volume estimation, initially based on the hypothesis of a spherical shape for the sample, was improved with the use of a second camera placed on top of the sample. This enabled a more precise determination of the volume to estimate density. An original post-treatment method was developed to obtain the surface tension by taking into account multimodal oscillation frequencies. The viscosity may be slightly overestimated due to the multimode oscillation. Measurement uncertainties are estimated based on propagation law for the three thermophysical properties considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data and materials will be provided on request.

References

  1. M. Pellegrini, K. Dolganov, L.E. Herranz, H. Bonneville, D. Luxat, M. Sonnenkalb, J. Ishikawa, J.H. Song, R.O. Gauntt, L.F. Moguel, F. Payot, Y. Nishi, Nucl. Technol. 196, 198 (2016). https://doi.org/10.13182/NT16-63

    Article  ADS  Google Scholar 

  2. M. Pellegrini and al., in Nureth-19 Int. Top. Mtg. Nucl. React. Thermal Hydraulics (Brussels, 2022).

  3. P. Piluso, M. Adorni, G. Azarian, K.-H. Bang, S. Basu, and M. Buck, Status Report on Ex-Vessel Steam Explosion: EVSE (NEA-OCDE, 2017).

  4. J. Delacroix, C. Journeau, P. Piluso, Front. Energy Res. (2022). https://doi.org/10.3389/fenrg.2022.883972

    Article  Google Scholar 

  5. S. Ozawa, S. Takahashi, S. Suzuki, H. Sugawara, H. Fukuyama, Jpn. J. Appl. Phys. 50, 11RD05 (2011). https://doi.org/10.1143/JJAP.50.11RD05

    Article  Google Scholar 

  6. Y. Su, M. Mohr, R.K. Wunderlich, X. Wang, Q. Cao, D. Zhang, Y. Yang, H.-J. Fecht, J.-Z. Jiang, J. Mol. Liq. 298, 111992 (2020). https://doi.org/10.1016/j.molliq.2019.111992

    Article  Google Scholar 

  7. H. Yoo, C. Park, S. Jeon, S. Lee, G.W. Lee, Metrologia 52, 677 (2015). https://doi.org/10.1088/0026-1394/52/5/677

    Article  Google Scholar 

  8. Y. Ohishi, K. Kurokawa, Y. Sun, H. Muta, J. Nucl. Mater. 528, 151873 (2020). https://doi.org/10.1016/j.jnucmat.2019.151873

    Article  Google Scholar 

  9. H. Oda, C. Koyama, M. Ohshio, H. Saruwatari, T. Ishikiwa, Int. J. Microgravity Sci. Appl. 37, 370302 (2020). https://doi.org/10.15011/ijmsa.37.3.370302

    Article  Google Scholar 

  10. D. Grishchenko, P. Piluso, HTHP 40, 127 (2011)

    Google Scholar 

  11. D.L. Price, High-Temperature Levitated Materials (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  12. D. Langstaff, M. Gunn, G.N. Greaves, A. Marsing, F. Kargl, Rev. Sci. Instrum. 84, 124901 (2013). https://doi.org/10.1063/1.4832115

    Article  ADS  Google Scholar 

  13. D. Manara, C. Ronchi, M. Sheindlin, M. Lewis, M. Brykin, J. Nucl. Mater. 342, 148 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.002

    Article  ADS  Google Scholar 

  14. I.C. Sommerville, W.S. Raw, J. Am. Leather Chem. Assoc. 44, 784 (1949)

    Google Scholar 

  15. P. Hofmann, S.J.L. Hagen, G. Schanz, A. Skokan, Nucl. Technol. 87, 327 (1989). https://doi.org/10.13182/NT-TMI2-146

    Article  ADS  Google Scholar 

  16. S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J.T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, T. Usuki, Nat. Commun. 5, 5892 (2014). https://doi.org/10.1038/ncomms6892

    Article  ADS  Google Scholar 

  17. T. Kondo, H. Muta, K. Kurosaki, F. Kargl, A. Yamaji, M. Furuya, Y. Ohishi, Heliyon 5, e02049 (2019). https://doi.org/10.1016/j.heliyon.2019.e02049

    Article  Google Scholar 

  18. W.K. Kim, J.H. Shim, M. Kaviany, J. Nucl. Mater. 491, 126 (2017). https://doi.org/10.1016/j.jnucmat.2017.04.030

    Article  ADS  Google Scholar 

  19. O.L.G. Alderman, C.J. Benmore, J.K.R. Weber, L.B. Skinner, A.J. Tamalonis, S. Sendelbach, A. Hebden, M.A. Williamson, Sci. Rep. 8, 2434 (2018). https://doi.org/10.1038/s41598-018-20817-z

    Article  ADS  Google Scholar 

  20. T. Kondo, H. Muta, Y. Ohishi, J. Nucl. Sci. Technol. 57, 889 (2020). https://doi.org/10.1080/00223131.2020.1736681

    Article  Google Scholar 

  21. E. Cheremisina, Z. Zhang, E. de Bilbao, J. Schenk, Ceram. Int. 49, 4460 (2023). https://doi.org/10.1016/j.ceramint.2022.09.332

    Article  Google Scholar 

  22. S.J. McCormack, A. Tamalonis, R.J.K. Weber, W.M. Kriven, Rev. Sci. Instrum. 90, 015109 (2019). https://doi.org/10.1063/1.5055738

    Article  ADS  Google Scholar 

  23. B. Glorieux, F. Millot, J.C. Rifflet, Int. J. Thermophys. 23, 1249 (2002). https://doi.org/10.1023/A:1019848405502

    Article  Google Scholar 

  24. T. Ishikawa, P.-F. Paradis, S. Yoda, Rev. Sci. Instrum. 72, 2490 (2001). https://doi.org/10.1063/1.1368861

    Article  ADS  Google Scholar 

  25. J. Canny, IEEE Trans. Pattern Anal. Machine Intell. (1986). https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  26. J.W.S. Rayleigh, Proc. R. Soc. Lond. 29, 71 (1879). https://doi.org/10.1098/rspl.1879.0015

    Article  Google Scholar 

  27. S. Hakamada, A. Nakamura, M. Watanabe, F. Kargl, Int. J. Microgravity Sci. Appl. 34, 340403 (2017). https://doi.org/10.15011/ijmsa.34.4_340403

    Article  Google Scholar 

  28. P.V.R. Suryanarayana, Y. Bayazitoglu, Phys. Fluids A 3, 967 (1991). https://doi.org/10.1063/1.857974

    Article  ADS  Google Scholar 

  29. D.L. Cummings, D.A. Blackburn, J. Fluid. Mech. 224, 395 (1991). https://doi.org/10.1017/S0022112091001817

    Article  ADS  Google Scholar 

  30. F. Millot, J.C. Rifflet, G. Wille, V. Sarou-Kanian, B. Glorieux, J. Am. Ceram. Soc. 85, 187 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00064.x

    Article  Google Scholar 

  31. G. Wille, F. Millot, J.C. Rifflet, Int. J. Thermophys. 23, 1197 (2002). https://doi.org/10.1023/A:1019888119614

    Article  Google Scholar 

  32. V. Sarou-Kanian, F. Millot, J.C. Rifflet, Int. J. Thermophys. 24, 277 (2003). https://doi.org/10.1023/A:1022466319501

    Article  Google Scholar 

  33. F. Millot, V. Sarou-Kanian, J.-C. Rifflet, B. Vinet, Mater. Sci. Eng. A 495, 8 (2008). https://doi.org/10.1016/j.msea.2007.10.108

    Article  Google Scholar 

  34. H. Lamb, Proc. Lond. Math. Soc. S1–13, 51 (1881). https://doi.org/10.1112/plms/s1-13.1.51

    Article  Google Scholar 

  35. JCGM_100, Evaluation of measurement data — Guide to the expression of uncertainty in measurement (2008). https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

  36. N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949). https://doi.org/10.1080/01621459.1949.10483310

    Article  Google Scholar 

  37. S.V. Ushakov, A. Shvarev, T. Alexeev, D. Kapush, A. Navrotsky, J. Am. Ceram. Soc. 100, 754 (2017). https://doi.org/10.1111/jace.14594

    Article  Google Scholar 

  38. V. Sarou-Kanian, J.-C. Rifflet, F. Millot, Ninth International Workshop on Subsecond Thermophysics (Austria, Graz, 2010), pp.249–261

    Google Scholar 

  39. J. C. Delabrouille, Surfusion de Quelques Métaux et Alliages (Faculté des sciences de Paris, Paris, 1969).

  40. T. Kondo, H. Muta, Y. Ohishi, HTHP 00, 1 (2019)

    Google Scholar 

  41. H.G. Kim, J. Choe, T. Inoue, S. Ozawa, J. Lee, Metall. Mater. Trans. B 47, 2079 (2016). https://doi.org/10.1007/s11663-016-0712-z

    Article  Google Scholar 

  42. J. Delacroix, P. Piluso, N. Chikhi, O. Asserin, D. Borel, A. Brosse, S. Cadiou, Steel Res. Int. 93, 2100624 (2022). https://doi.org/10.1002/srin.202100624

    Article  Google Scholar 

  43. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Oxford University Press, Oxford, 1988)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the cross-cutting basic research Program (RTA Program) of the CEA Energy Division.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CD, ZZ and EdB carried out the experiments. CD has written the main part of the article. EdB, JD and PP have added some contributions, and reviewed the present article in a collegial manner.

Corresponding author

Correspondence to Caroline Denier.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: High-Speed Camera Calibration: Detailed Parameters and Results

The calibration of the high-speed camera also allowed to define satisfying parameters (size of the drop, gas flow) to optimize the levitation and reduce the standard deviation on measured diameters. For each steel ball, several gas flow were used and the width and the height of the drop were obtained with their standard deviation by using the Python script (Table

Table 4 Measured diameters of calibration steel beads for several gas flows with standard deviation

4). Standard deviation was smaller for the biggest diameter, but it was not chosen because the drop with a higher mass is subjected to deformation in its lower part; thus the recommended diameter is around 2 mm for the sample. The standard deviation is always higher on the height, as this diameter is partially extrapolated due to the top of the nozzle hiding the lower part of the drop. Increasing the gas flow enables to see a bigger part of the sample with the high-speed camera, but it may also destabilize the drop and complicates the measurement of its thermophysical properties.

Appendix 2: Raw Data for the Three Thermophysical Properties Measured

The raw data and their uncertainties for the density, the surface tension, and the viscosity measured in this work are given Tables

Table 5 Raw data for the density

5,

Table 6 Raw data for the surface tension

6 and

Table 7 Raw data for the viscosity

7, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denier, C., Zhang, Z., de Bilbao, E. et al. Thermophysical Properties of Liquid Zirconia Measured by Aerodynamic Levitation at High Temperature. Int J Thermophys 44, 127 (2023). https://doi.org/10.1007/s10765-023-03230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03230-1

Keywords

Navigation