Skip to main content
Log in

Measurements of Critical Properties for Carbon Dioxide (CO2) + Propylene (R-1270) Binary Mixture

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Critical temperature and critical pressure of binary mixture of carbon dioxide (CO2) and propylene (R-1270) are measured in this study. Critical point is determined by the observation of disappearance and reappearance of the meniscus in a sapphire view cell. The experimental data were correlated by the Redlich–Kister equations, and the correlated results showed a good agreement with experimental data with average absolute deviation of 0.08% for critical temperature and 0.14% for critical pressure, respectively. Also, the experimental data are compared with the prediction results of Peng-Robinson equation of state and Helmholtz energy equation of state by using critical locus tracing method. The results show that the addition of propylene can increase critical temperature of pure CO2 and lower its critical pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. S. Rath, E. Mickoleit, U. Gampe, C. Breitkopf, A. Jäger, Energy 252, 123957 (2022). https://doi.org/10.1016/j.energy.2022.123957

    Article  Google Scholar 

  2. Y. Yang, X. Wang, K. Hooman, K. Han, J. Xu, S. He, J. Qi, Energy 266, 126429 (2023). https://doi.org/10.1016/j.energy.2022.126429

    Article  Google Scholar 

  3. E. Morosini, A. Ayub, G. di Marcoberardino, C.M. Invernizzi, P. Iora, G. Manzolini, Energy Convers. Manag. 255, 5263 (2022). https://doi.org/10.1016/j.enconman.2022.115263

    Article  Google Scholar 

  4. M. Bertini, D. Fiaschi, G. Manfrida, P.H. Niknam, L. Talluri, Energy Convers Manag. 245, 4568 (2021). https://doi.org/10.1016/j.enconman.2021.114568

    Article  Google Scholar 

  5. M.E. Siddiqui, E. Almatrafi, A. Bamasag, U. Saeed, Renew. Energy 199, 1372 (2022). https://doi.org/10.1016/j.renene.2022.09.095

    Article  Google Scholar 

  6. P. Liu, G.Q. Shu, H. Tian, W. Feng, L.F. Shi, X. Wang, Energ. Convers. Manage 208, 112574 (2020). Doi: https://doi.org/10.1016/j.enconman.2020.112574

  7. D. Peng, D.B. Robinson, AIChE J. 23, 137 (1977). https://doi.org/10.1002/aic.690230202

    Article  Google Scholar 

  8. S.C. Yelishala, K. Kannaiyan, R. Sadr, Z. Wang, Y.A. Levendis, H. Metghalchi, Int. J. Refrig. 119, 294 (2020). https://doi.org/10.1016/j.ijrefrig.2020.08.006

    Article  Google Scholar 

  9. J.H. Kim, M.S. Kim, Fluid Phase Equilib. 238, 13 (2005). https://doi.org/10.1016/j.fluid.2005.09.006

    Article  Google Scholar 

  10. S. Horstmann, K. Fischer, J. Gmehling, P. Kolář, J. Chem. Thermodyn. 32, 451 (2000). https://doi.org/10.1006/jcht.2000.0611

    Article  Google Scholar 

  11. F.H. Poettmann, D.L. Katz, Ind. End. Chem. 37, 847 (1945). https://doi.org/10.1021/ie50429a017

    Article  Google Scholar 

  12. H.H. Reamer, B.H. Sage, W.N. Lacey, Ind. End. Chem. 43, 2515 (1951). https://doi.org/10.1021/ie50503a035

    Article  Google Scholar 

  13. J.G. Roof, J.D. Baron, J. Chem. Eng. Data. 12, 292 (1967). https://doi.org/10.1021/je60034a003

    Article  Google Scholar 

  14. G. Morrison, J. Kincaid, AIChE J. 30, 257 (1984). https://doi.org/10.1002/aic.690300213

    Article  Google Scholar 

  15. V.G. Niesen, J.C. Rainwater, J. Chem. Thermodyn. 22, 777 (1990). https://doi.org/10.1016/0021-9614(90)90070-7

    Article  Google Scholar 

  16. N. Juntarachat, S. Bello, R. Privat, J.N. Jaubert, J. Chem. Eng. Data 58, 671 (2013). https://doi.org/10.1021/je301209u

    Article  Google Scholar 

  17. R. Olds, H. Reamer, B. Sage, W. Lacey, Ind. End. Chem. 41, 475 (1949). https://doi.org/10.1021/IE50471A011

    Article  Google Scholar 

  18. M.E. Pozo de Fernandez, J.A. Zollweg, W.B. Streett, J. Chem. Eng. Data. 34, 324 (1989). https://doi.org/10.1021/je00057a019

    Article  Google Scholar 

  19. J.J.C. Hsu, N. Nagarajan, R.L. Robinson Jr., J. Chem. Eng. Data. 30, 485 (1985). https://doi.org/10.1021/je00042a036

    Article  Google Scholar 

  20. J. Li, Z. Qin, G. Wang, M. Dong, J. Wang, J. Chem. Eng. Data. 52, 1736 (2007). https://doi.org/10.1021/je700132w

    Article  Google Scholar 

  21. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology (2018). https://www.nist.gov/srd/refprop

  22. C. Wu, S.S. Wang, X.H. Jiang, J. Li, Appl. Therm. Eng. 115, 292 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.077

    Article  Google Scholar 

  23. J.X. Xia, J.F. Wang, G. Zhang, J.W. Lou, P. Zhao, Y.P. Dai, Appl. Therm. Eng. 144, 31 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.012

    Article  Google Scholar 

  24. C.J.N. Sanchez, A.K. da Silva, Energy 142, 180 (2018). https://doi.org/10.1016/j.energy.2017.09.120

    Article  Google Scholar 

  25. J.-W. Qian, J.-N. Jaubert, R. Privat, Fluid Phase Equilib. 354, 212 (2013). https://doi.org/10.1016/j.fluid.2013.06.040

    Article  Google Scholar 

  26. G.G. Haselden, P. Snowden, Trans. Faraday Soc. 58, 1515 (1962). https://doi.org/10.1039/TF9625801515

    Article  Google Scholar 

  27. G.G. Haselden, D.M. Newitt, S.M. Shah, Proc. R. Soc. Lond. A 209, 1 (1951). https://doi.org/10.1098/rspa.1951.0183

    Article  ADS  Google Scholar 

  28. G.G. Haselden, F.A. Holland, M.B. King, R.F. Strickland-Constable, Proc. R. Soc. Lond. A 240, 1 (1957). https://doi.org/10.1098/rspa.1957.0063

    Article  ADS  Google Scholar 

  29. M. Yorizane, S. Yoshimura, H. Masuoka, Kagaku Kogaku 30, 1093 (1966). https://doi.org/10.1252/kakoronbunshu1953.30.1093

    Article  Google Scholar 

  30. K. Nagahama, H. Konishi, D. Hoshino, M. Hirata, J. Chem. Eng. Jpn. 7, 323 (1974). https://doi.org/10.1252/jcej.7.323

    Article  Google Scholar 

  31. K. Ohgaki, S. Nakai, S. Nitta, T. Katayama, Fluid Phase Equilib. 8, 113 (1982). https://doi.org/10.1016/0378-3812(82)80029-0

    Article  Google Scholar 

  32. J. Ke, B. Han, M.W. George, H. Yan, M. Poliakoff, J. Am. Chem. Soc. 123, 3661 (2001). https://doi.org/10.1021/ja003446o

    Article  Google Scholar 

  33. J.-N. Jaubert, F. Mutelet, Fluid Phase Equilib. 224, 285 (2004). https://doi.org/10.1016/j.fluid.2004.06.059

    Article  Google Scholar 

  34. C.B. Soo, P. Theveneau, C. Coquelet, D. Ramjugernath, D. Richon, J. Supercrit. Fluid. 55, 545 (2010). https://doi.org/10.1016/j.supflu.2010.10.022

    Article  Google Scholar 

  35. N. Juntarachat, S. Bello, R. Privat, J.-N. Jaubert, Fluid Phase Equilibr. 325, 66 (2012). https://doi.org/10.1016/j.fluid.2012.04.010

    Article  Google Scholar 

  36. N. Zhang, P. Hu, L.X. Chen, M.H. Liu, Q. Chen, J. Chem. Eng. Data. 66, 2717 (2021). https://doi.org/10.1021/acs.jced.1c00065

    Article  Google Scholar 

  37. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996). https://doi.org/10.1063/1.555991

    Article  ADS  Google Scholar 

  38. E.W. Lemmon, M.O. McLinden, U. Overhoff, W. Wagner, Unpublished Helmholtz equation of state for propylene, (2018).

  39. R. Sun, H. Tian, Z. Wu, L. Shi, G. Shu, Int. J. Thermophys. 43, 122 (2022). https://doi.org/10.1007/s10765-022-03048-3

    Article  ADS  Google Scholar 

  40. O. Redlich, A.T. Kister, Ind. End. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  41. P.H. van Konynenburg, R.L. Scott, Philos. Trans. R. Soc. A 298, 495 (1980). https://doi.org/10.1098/rsta.1980.0266

    Article  ADS  Google Scholar 

  42. U.K. Deiters, I.H. Bell, Ind. Eng. Chem. Res. 59, 19062 (2020). https://doi.org/10.1021/acs.iecr.0c03667

    Article  Google Scholar 

  43. I.H. Bell, U.K. Deiters, A.M.M. Leal, Ind. Eng. Chem. Res. 61, 6010 (2022). https://doi.org/10.1021/acs.iecr.2c00237

    Article  Google Scholar 

  44. I.H. Bell, E.W. Lemmon, J. Chem. Eng. Data. 61, 3752 (2016). https://doi.org/10.1021/acs.jced.6b00257

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (No. 52022066).

Funding

The National Natural Science Foundation of China (No. 52022066).

Author information

Authors and Affiliations

Authors

Contributions

Rui Sun performed the experiment, and prepared Figs. 16. Rui Sun, Hua Tian and Gequn Shu wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hua Tian or Gequn Shu.

Ethics declarations

Competing interests

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Tian, H. & Shu, G. Measurements of Critical Properties for Carbon Dioxide (CO2) + Propylene (R-1270) Binary Mixture. Int J Thermophys 44, 96 (2023). https://doi.org/10.1007/s10765-023-03205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03205-2

Keywords

Navigation