Skip to main content
Log in

Viscosity and Thermal Conductivity Model of HFOs and HFO/HFC Mixtures Based on Friction Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Hydrofluoroolefins (HFOs) are a category of environmentally friendly refrigerants. The transport properties such as viscosity and thermal conductivity of pure HFOs and HFO/HFC mixtures are essential for the investigation of flow and heat transfer characteristic of fluids. Therefore, it is necessary to provide the viscosity and thermal conductivity calculation method of HFOs and HFO/HFC mixtures. In this work, the viscosity and thermal conductivity models of HFOs including R1234yf, R1234ze(E), R1234ze(Z), R1243zf, R1336mzz(Z), and R1336mzz(E) were established based on the friction theory (FT) and Peng–Robinson (PR) equation of state, and the overall ARD between the experimental values and those calculated from the model is 1.6% and 2.0%, respectively. The viscosities and thermal conductivities of HFO/HFC mixtures were predicted using mixing rule and the established FT model. Results show that the established FT model has good predictive ability for the viscosity and thermal conductivity of HFO/HFC mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. R. Falkner, Int. Aff. 92, 1107–1125 (2016)

    Article  Google Scholar 

  2. T. Birmpili, C. R. Geosci. 350, 425–431 (2018)

    Article  Google Scholar 

  3. S. Bobbo, G.D. Nicola, C. Zilio, J.S. Brown, L. Fedele, Int. J. Refrig. 90, 181–201 (2018)

    Article  Google Scholar 

  4. M.O. McLinden, A.F. Kazakov, J.S. Brown, P.A. Domanski, Int. J. Refrig. 38, 80–92 (2014)

    Article  Google Scholar 

  5. P.S. Raveendran, S.J. Sekhar, Inst. Mech. Eng. E 235, 718–730 (2019)

    Google Scholar 

  6. A. Mota-Babiloni, P. Makhnatch, R. Khodabandeh, J. Navarro-Esbri, Int. J. Refrig. 74, 682–688 (2017)

    Article  Google Scholar 

  7. Y. Lee, D.G. Kang, D. Jung, Int. J. Refrig. 36, 1203–1207 (2013)

    Article  Google Scholar 

  8. M.L. Huber, J.F. Ely, Fluid Phase Equilib. 80, 239–248 (1992)

    Article  Google Scholar 

  9. M.L. Huber, D.G. Friend, J.F. Ely, Fluid Phase Equilib. 80, 249–261 (1992)

    Article  Google Scholar 

  10. M.L. Huber, A. Laesecke, R.A. Perkins, Ind. Eng. Chem. Res. 42, 3163–3178 (2003)

    Article  Google Scholar 

  11. M.J. Assael, J.H. Dymond, S.K. Polimatidou, Int. J. Thermophys. 16, 761–772 (1995)

    Article  ADS  Google Scholar 

  12. M.J. Assael, N.K. Dalaouti, J.H. Dymond, E.P. Feleki, Int. J. Thermophys. 21, 367–375 (2000)

    Article  Google Scholar 

  13. X. Gao, M.J. Assael, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 21, 23–34 (2000)

    Article  Google Scholar 

  14. A.S. Teja, R.L. Smith, R.K. King, T.F. Sun, Int. J. Thermophys. 20, 149–161 (1999)

    Article  Google Scholar 

  15. K. Kang, X.L. Li, Y.X. Gu, X.P. Wang, J. Mol. Liq. 368, 120568 (2022)

    Article  Google Scholar 

  16. W.A. Fouad, L.F. Vega, J. Supercrit. Fluids 131, 106–116 (2018)

    Article  Google Scholar 

  17. X.L. Li, K. Kang, Y.X. Gu, X.P. Wang, J. Mol. Liq. 367, 120479 (2022)

    Article  Google Scholar 

  18. W.A. Fouad, J. Chem. Eng. Data 65, 5688–5697 (2020)

    Article  Google Scholar 

  19. X.X. Yang, D.C. Kim, E.F. May, I.H. Bell, Ind. Eng. Chem. Res. 60, 13052–13070 (2021)

    Article  Google Scholar 

  20. X.X. Yang, X. Xiao, E.F. May, I.H. Bell, J. Chem. Eng. Data 66, 1385–1398 (2021)

    Article  Google Scholar 

  21. H.T. Liu, F.F. Yang, X.X. Yang, Z. Yang, Y.Y. Duan, J. Mol. Liq. 330, 115612 (2021)

    Article  Google Scholar 

  22. H.T. Liu, F.F. Yang, Z. Yang, Y.Y. Duan, J. Mol. Liq. 308, 113027 (2020)

    Article  Google Scholar 

  23. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, Fluid Phase Equilib. 169, 249–276 (2000)

    Article  Google Scholar 

  24. S.E. Quiñones-Cisneros, S. Pollak, K.A.G. Schmidt, J. Chem. Eng. Data 66, 4215–4227 (2021)

    Article  Google Scholar 

  25. C.K. Zéberg-Mikkelsen, S.E. Quiñones-Cisneros, E.H. Stenby, Ind. Eng. Chem. Res. 40, 2966–2970 (2001)

    Article  Google Scholar 

  26. C.K. Zéberg-Mikkelsen, S.E. Quiñones-Cisneros, E.H. Stenby, Int. J. Thermophys. 23, 437–454 (2002)

    Article  Google Scholar 

  27. S.P. Tan, H. Adidharma, B.F. Towler, M. Radosz, Ind. Eng. Chem. Res. 45, 2116–2122 (2006)

    Article  Google Scholar 

  28. X. Wang, J. Wu, Z. Liu, Fluid Phase Equilib. 262, 251–263 (2007)

    Article  Google Scholar 

  29. H. Habibi, A. Hekmat-Nazemi, M. Kamran-Pirzama, A.H. Mohammadi, J. Mol. Liq. 220, 558–565 (2016)

    Article  Google Scholar 

  30. R. Macías-Salinas, Ind. Eng. Chem. Res. 57, 1109–1120 (2018)

    Article  Google Scholar 

  31. Y. Khemka, C.J. Sisco, M.I.L. Abutaqiya, W.G. Chapman, F.M. Vargas, Fluid Phase Equilib. 530, 112896 (2021)

    Article  Google Scholar 

  32. T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Res. 27, 671–679 (1988)

    Article  Google Scholar 

  33. P.D. Neufeld, A.R. Janzen, R.A. Aziz, J. Chem. Phys. 57, 1100–1102 (1972)

    Article  ADS  Google Scholar 

  34. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  35. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 10.0. National Institute of Standards and Technology, Boulder, USA (2018).

  36. Y.G. Dang, H.S. Kim, C.B. Dang, E. Hihara, Int. J. Refrig. 58, 131–136 (2015)

    Article  Google Scholar 

  37. X.Y. Meng, G.S. Qiu, J.T. Wu, I.M. Abdulagatov, J. Chem. Thermodyn. 63, 24–30 (2013)

    Article  Google Scholar 

  38. G.J. Zhao, S.S. Bi, A.P. Fröba, J.T. Wu, J. Chem. Eng. Data 59, 1366–1371 (2014)

    Article  Google Scholar 

  39. Y.G. Dang, T. Kamiaka, C.B. Dang, E. Hibara, J. Chem. Thermodyn. 89, 183–188 (2015)

    Article  Google Scholar 

  40. D.S. Cousins, A. Laesecke, J. Res. Nat. Inst. Stand. Technol. 117, 231–256 (2012)

    Article  Google Scholar 

  41. M.J. Alam, M.A. Islam, K. Kariya, A. Miyara, Int. J. Refrig. 131, 341–347 (2021)

    Article  Google Scholar 

  42. M.J. Alam, A. Miyara, K. Kariya, K.K. Kontomaris, J. Chem. Eng. Data 63, 1706–1712 (2018)

    Article  Google Scholar 

  43. X. Zhang, G.J. Zhao, J.G. Yin, S.X. Ma, Fluid Phase Equilib. 559, 113468 (2022)

    Article  Google Scholar 

  44. Y.K. Sun, X.J. Li, X.Y. Meng, J.T. Wu, J. Chem. Eng. Data 64, 395–403 (2019)

    Article  Google Scholar 

  45. D. Mondal, K. Kariya, A.R. Tuhin, N. Amakusa, A. Miyara, Int. J. Refrig. 133, 267–275 (2022)

    Article  Google Scholar 

  46. M. Takahashi, N. Shibasaki-Kitakawa, C. Yokoyama, S. Takahashi, J. Chem. Eng. Data 40, 900–902 (1995)

    Article  Google Scholar 

  47. P.J. Dunlop, J. Chem. Phys. 100, 3149–3151 (1994)

    Article  ADS  Google Scholar 

  48. M.J. Assael, J.H. Dymond, S.K. Polimatidou, Int. J. Thermophys. 15, 591–601 (1994)

    Article  ADS  Google Scholar 

  49. L.Q. Sun, M.S. Zhu, L.Z. Han, Z.Z. Lin, J. Chem. Eng. Data 41, 292–296 (1996)

    Article  Google Scholar 

  50. A. Laesecke, T.O.D. Lüddecke, R.F. Hafer, D.J. Morris, Int. J. Thermophys. 20, 401–434 (1999)

    Article  Google Scholar 

  51. C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 14, 1131–1143 (1993)

    Article  ADS  Google Scholar 

  52. M. Takahashi, N. Shibasaki-Kitakawa, C. Yokoyama, Int. J. Thermophys. 20, 445–453 (1999)

    Article  Google Scholar 

  53. M.J. Assael, S.K. Polimatidou, Int. J. Thermophys. 18, 353–366 (1997)

    Article  ADS  Google Scholar 

  54. D. Ripple, D. Defibaugh, J. Chem. Eng. Data 42, 360–364 (1997)

    Article  Google Scholar 

  55. M.J. Assael, L. Karagiannidis, S.K. Polimatidou, Int. J. Thermophys. 16, 133–143 (1995)

    Article  ADS  Google Scholar 

  56. D.E. Diller, S.M. Peterson, Int. J. Thermophys. 14, 55–66 (1993)

    Article  ADS  Google Scholar 

  57. M.J. Assael, S.K. Polimatidou, Int. J. Thermophys. 15, 779–790 (1994)

    Article  ADS  Google Scholar 

  58. H.M.N.T. Avelino, J.M.N.A. Fareleira, C.M.B.P. Oliveira, J. Chem. Eng. Data 51, 1672–1677 (2006)

    Article  Google Scholar 

  59. N. Shibasaki-Kitakawa, M. Takahashi, C. Yokoyama, Int. J. Thermophys. 19, 1285–1295 (1998)

    Article  Google Scholar 

  60. J. Wilhelm, E. Vogel, Fluid Phase Equilib. 125, 257–266 (1996)

    Article  Google Scholar 

  61. D.C. Dowdell, G.P. Matthews, J. Chem. Soc. Faraday Trans. 89, 3545–3552 (1993)

    Article  Google Scholar 

  62. T. Okubo, T. Hasuo, A. Nagashima, Int. J. Thermophys. 13, 931–942 (1992)

    Article  ADS  Google Scholar 

  63. C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 14, 33–44 (1993)

    Article  ADS  Google Scholar 

  64. G.K. Lavrenchenko, G.Y. Ruvinskij, S.V. Iljushenko, V.V. Kanaev, Int. J. Refrig. 15, 386–392 (1992)

    Article  Google Scholar 

  65. M. Takahashi, N. Shibasaki-Kitakawa, C. Yokoyama, Int. J. Thermophys. 20, 435–443 (1999)

    Article  Google Scholar 

  66. H.W. Guo, X.L. Wu, Y. Zhang, X.H. Han, G.M. Chen, Ind. Eng. Chem. Res. 60, 9592–9601 (2021)

    Article  Google Scholar 

  67. D. Mondal, K. Kariya, A.R. Tuhin, K. Miyoshi, A. Miyara, Int. J. Refrig. 129, 109–117 (2021)

    Article  Google Scholar 

  68. R.A. Perkins, M.L. Huber, J. Chem. Eng. Data 56, 4868–4874 (2011)

    Article  Google Scholar 

  69. A. Miyara, R. Fukuda, K. Tsubaki, Trans. Jpn. Soc. Refrig. Air Cond. Eng. 28, 435–443 (2011)

    Google Scholar 

  70. D. Kim, H.T. Liu, X.X. Yang, F.F. Yang, J. Morfitt, A. Arami-Niya, M. Ryu, Y.Y. Duan, E.F. May, Int. J. Refrig. 131, 990–999 (2021)

    Article  Google Scholar 

  71. M.J. Alam, M.A. Islam, K. Kariya, A. Miyara, Int. J. Refrig. 84, 220–227 (2017)

    Article  Google Scholar 

  72. R.A. Perkins, M.L. Huber, Int. J. Thermophys. 41, 103 (2020)

    Article  ADS  Google Scholar 

  73. B. Le Neindre, Y. Garrabos, Int. J. Thermophys. 22, 701–722 (2001)

    Article  Google Scholar 

  74. M.J. Assael, L. Karagiannidis, Int. J. Thermophys. 16, 851–865 (1995)

    Article  ADS  Google Scholar 

  75. S.T. Ro, J.Y. Kim, D.S. Kim, Int. J. Thermophys. 16, 1193–1201 (1995)

    Article  ADS  Google Scholar 

  76. U. Gross, Y.W. Song, Int. J. Thermophys. 17, 607–619 (1996)

    Article  ADS  Google Scholar 

  77. O.B. Tsvetkov, Y.A. Laptev, A.G. Asambaev, Int. J. Thermophys. 15, 203–214 (1994)

    Article  ADS  Google Scholar 

  78. B. Le Neindre, Y. Garrabos, Int. J. Thermophys. 20, 375–399 (1999)

    Article  Google Scholar 

  79. U. Gross, Y.W. Song, E. Hahne, Int. J. Thermophys. 13, 957–983 (1992)

    Article  ADS  Google Scholar 

  80. A. Laesecke, R.A. Perkins, C.A. Nieto de Castro, Fluid Phase Equilib. 80, 263–274 (1992)

    Article  Google Scholar 

  81. M.J. Assael, E. Karagiannidis, Int. J. Thermophys. 14, 183–197 (1993)

    Article  ADS  Google Scholar 

  82. B. Le Neindre, Y. Garrabos, M.S. Kim, Int. J. Thermophys. 22, 723–748 (2001)

    Article  Google Scholar 

  83. S.H. Lee, M.S. Kim, S.T. Ro, J. Chem. Eng. Data 46, 1013–1015 (2001)

    Article  Google Scholar 

  84. M. Akhfash, S.Z.S. Al Ghafri, D. Rowland, T.J. Hughes, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Eng. Data 64, 1122–1130 (2019)

    Article  Google Scholar 

  85. X.M. Liang, Q.Y. Sun, X.Y. Meng, J.T. Wu, J. Chem. Eng. Data 67, 1872–1881 (2022)

    Article  Google Scholar 

  86. X.Y. Meng, Y.K. Sun, F.L. Cao, C.Y. Wen, J.T. Wu, J. Refrig. 39, 39–47 (2018)

    Google Scholar 

  87. Y.K. Sun, F.L. Cao, X.Y. Meng, J.T. Wu, J. Eng. Thermophys. 40, 2232–2238 (2019)

    Google Scholar 

  88. X.X. Yang, H.T. Liu, S.H. Chen, D. Kim, F.F. Yang, A. Arami-Niya, Y.Y. Duan, Int. J. Refrig. 128, 197–205 (2021)

    Article  Google Scholar 

  89. X.X. Yang, A. Arami-Niya, X. Xiao, D.C. Kim, S.Z.S. Al Ghafri, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Eng. Data 65, 4252–4262 (2020)

    Article  Google Scholar 

  90. A.J. Rowane, I.H. Bell, M.L. Huber, R.A. Perkins, Ind. Eng. Chem. Res. 61, 11589–11596 (2022)

    Article  Google Scholar 

  91. S.K. Mylona, T.J. Hughes, A.A. Saeed, D. Rowland, J. Park, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Thermodyn. 133, 135–142 (2019)

    Article  Google Scholar 

  92. D. Kim, X.X. Yang, A. Armaji-Niya, D. Rowland, X. Xiao, S.Z.S. Al Ghafri, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Thermodyn. 151, 106248 (2020)

    Article  Google Scholar 

  93. K. Tanaka, J. Ishikawa, K.K. Kontomaris, Int. J. Refrig. 82, 283–287 (2017)

    Article  Google Scholar 

  94. G. Raabe, J. Chem. Eng. Data 60, 2412–2419 (2015)

    Article  Google Scholar 

  95. T. Kamiaka, C. Dang, E. Hihara, Int. J. Refrig. 36, 965–971 (2013)

    Article  Google Scholar 

  96. W. Sun, P. Zhang, C. Zhang, Fluid Mach. 45, 78–83 (2017)

    Google Scholar 

  97. H.Y. Zhang, X.Q. Dong, Q. Zhong, H.Y. Li, M.Q. Gong, J. Shen, J.F. Wu, Int. J. Refrig. 73, 144–153 (2017)

    Article  Google Scholar 

  98. P. Hu, L.X. Chen, Z.S. Chen, Fluid Phase Equilib. 360, 293–297 (2013)

    Article  Google Scholar 

  99. Y.K. Sun, T. Yang, J.T. Wu, CIESC J. 73, 1063–1071 (2022)

    Google Scholar 

  100. S.Z.S. Al Ghafri, D. Rowland, M. Akhfash, A. Arami-Niya, M. Khamphasith, X. Xiao, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, Int. J. Refrig. 98, 249–260 (2019)

    Article  Google Scholar 

  101. T. Yang, X.Z. Hu, X.Y. Meng, J.T. Wu, J. Chem. Thermodyn. 150, 106222 (2020)

    Article  Google Scholar 

  102. T. Yang, J.I. Siepmann, J.T. Wu, Ind. Eng. Chem. Res. 60, 739–752 (2021)

    Article  Google Scholar 

  103. X.Z. Hu, X.Y. Meng, J.T. Wu, Fluid Phase Equilib. 431, 58–65 (2017)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (Grant No. 2022YFE0210200) and National Natural Science Foundation of China (Grant No. 52125602).

Author information

Authors and Affiliations

Authors

Contributions

HJ contributed to model establishment and analysis of the results, writing draft version. YH contributed to the data collection. XW contributed to reviewing and editing the whole manuscript. BG contributed to the discussion about the results.

Corresponding author

Correspondence to Xiaopo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Hu, Y., Wang, X. et al. Viscosity and Thermal Conductivity Model of HFOs and HFO/HFC Mixtures Based on Friction Theory. Int J Thermophys 44, 76 (2023). https://doi.org/10.1007/s10765-023-03189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03189-z

Keywords

Navigation