Skip to main content
Log in

Thermophysical Properties of Bentonite–Sand/Fly Ash-Based Backfill Materials for Underground Power Cable

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The surrounding (backfill) materials around the underground power cable systems are essential for dissipating the heat away from it, during the exertion phases. The heat dissipation restrains the thermal instability and risk of progressive drying of the backfill materials, thus reducing the thermal stress on the power cable. Thermal instability indicates the reduction in thermal properties (conductivity or diffusivity) due to the migration of moisture because of heat accumulation. Thus, the backfill materials should have adequate thermal properties and water retention capacity to transfer the heat from the heat source to the surrounding area with minimal moisture migration. The bentonite has high water retention capacity, but low thermal conductivity, whereas sand/fly ash exhibits low water retention and has higher thermal conductivity than bentonite. The addition of bentonite promotes the water holding capacity and thermophysical properties of sand and fly ash. Therefore, this study presents the thermal properties of backfill materials, bentonite–fly ash (B–F) and bentonite–sand (B–S), at varying weight-percent of sand and fly ash with bentonite. Various compositions of the mixtures were compacted to varying dry densities, and water contents and thermal properties variation of backfill materials were measured using a dual thermal needle probe ‘KD2 Pro’ at room temperature. The study deals with the systematic evaluation of the volumetric specific heat capacity, thermal conductivity, and diffusivity of backfill materials against varying dry density and water content. The threshold water content (TWC) has been determined from the thermal diffusivity–water content variation curve, and it has correlated with plastic limit (PL) and optimum moisture content (OMC). Thereafter, the efficacies of two thermal conductivity prediction models have also been evaluated statistically with respect to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data of this study are available from the corresponding author upon reasonable request.

Abbreviations

λ :

Thermal conductivity

C v :

Volumetric specific heat capacity

D :

Thermal diffusivity

w :

Water content

γ d :

Dry density

S r :

Degree of saturation

f s :

Sand content

B:

Bentonite

F:

Fly ash

S:

Sand

λ n :

Kertsen’s number

λ dry :

Dry thermal conductivity

λ sat :

Saturated thermal conductivity

q :

Quartz content

κ :

Fitting parameters for Cote and Konrad (2005) thermal conductivity model

e :

Void ratio

n :

Porosity

θ :

Volumetric water content

λ m :

Measured thermal conductivity

λ p :

Predicted thermal conductivity

RMSE:

Root-mean-square error

MAE:

Mean absolute error

R 2 :

Coefficient of regression

References

  1. S. Maximov, V. Venegas, J.L. Guardado, E.L. Moreno, R. López, Electr. Power Syst. Res. 132, 22 (2016)

    Article  Google Scholar 

  2. M. Zakarka, Š Skuodis, G. Šiupšinskas, J. Bielskus, Open Geosci. 13, 988 (2021)

    Article  Google Scholar 

  3. I.A. Metwally, A.H. Al-Badi, A.S. AlFarsi, Electr. Eng. 95, 383 (2013)

    Article  Google Scholar 

  4. L. Zichella, E. Choorackal, M. Airoldi, P.P. Riviera, R. Bellopede, E. Santagata, Appl. Sci. 10, 1 (2020)

    Article  Google Scholar 

  5. Z.G. Chen, C.S. Tang, Z. Shen, Y.M. Liu, B. Shi, Environ. Earth Sci. (2017). https://doi.org/10.1007/s12665-017-6580-2

    Article  Google Scholar 

  6. M. Mahmoud, M. Ramadan, K. Pullen, M.A. Abdelkareem, T. Wilberforce, A.G. Olabi, S. Naher, Int. J. Thermofluids 10, 100070 (2021)

    Article  Google Scholar 

  7. F. Salata, F. Nardecchia, A. De Lieto Vollaro, F. Gugliermetti, Appl. Therm. Eng. 78, 268 (2015)

    Article  Google Scholar 

  8. S. Ahmad, Z. Rizvi, M.A. Khan, J. Ahmad, F. Wuttke, Mater. Today Proc. 17, 85 (2019)

    Article  Google Scholar 

  9. H. Lu, F. De Leon, D.N. Soni, W. Wang, IEEE Trans. Power Deliv. 33, 3196 (2018)

    Article  ADS  Google Scholar 

  10. O.E. Gouda, G.F.A. Osman, W.A.A. Salem, S.H. Arafa, I.E.T. Gener, Transm. Distrib. 12, 4125 (2018)

    Article  Google Scholar 

  11. M. Hruška, C. Clauser, R.W. De Doncker, Vadose Zo. J. 17, 1 (2018)

    Article  Google Scholar 

  12. P. Ocùoñ, D. Taler, P. Cisek, M. Pilarczyk, Strength Mater. 47, 770 (2015)

    Article  Google Scholar 

  13. M. Rerak, P. Ocłoń, J. Therm. Sci. 26, 465 (2017)

    Article  ADS  Google Scholar 

  14. J.O. Lee, K. Birch, H.J. Choi, Ann. Nucl. Energy 72, 63 (2014)

    Article  Google Scholar 

  15. O.E.S. Gouda, G.F.A. Osman, W.A.A. Salem, S.H. Arafa, IEEE Trans. Power Deliv. 33, 3122 (2018)

    Article  Google Scholar 

  16. P.K. Kolay, D.N. Singh, J. Mater. Civ. Eng. 14, 441 (2002)

    Article  Google Scholar 

  17. P. Ocłoń, P. Cisek, M. Matysiak, Clean Technol. Environ. Policy 23, 869 (2021)

    Article  Google Scholar 

  18. F. Donazzi, E. Occhini, A. Seppi, Proc. Inst. Electr. Eng. 126, 506 (1979)

    Article  Google Scholar 

  19. H. Chen, H. Ding, S. Liu, X. Chen, W. Wu, Q. Wang, Appl. Therm. Eng. 70, 1018 (2014)

    Article  Google Scholar 

  20. A. Deka, C.B. Gupt, S. Sekharan, Geotech. Geol. Eng. 39, 3889 (2021)

    Article  Google Scholar 

  21. A.M. Tang, Y.J. Cui, J. Rock Mech. Geotech. Eng. 2, 91 (2010)

    Article  Google Scholar 

  22. H. Wang, Y. Cui, C. Qi, Heat Transf. Eng. 34, 37 (2013)

    Article  ADS  Google Scholar 

  23. K.K. Agrawal, R. Misra, G. Das Agrawal, Renew. Energy 146, 2008 (2020)

    Article  Google Scholar 

  24. L. Xu, W.M. Ye, B. Chen, Y.G. Chen, Y.J. Cui, Eng. Geol. 213, 46 (2016)

    Article  Google Scholar 

  25. B. Liang, M. Chen, J. Guan, J. Therm. Anal. Calorim. 147, 10163 (2022)

    Article  Google Scholar 

  26. Y.M. Tien, C.A. Chu, W.S. Chuang, Clays Nat. Eng. Barriers Radioact. Waste Confin. 657, 657 (2005)

    Google Scholar 

  27. W.J. Cho, J.O. Lee, S. Kwon, Heat Mass Transf. Und Stoffuebertragung 47, 1385 (2011)

    Article  ADS  Google Scholar 

  28. A.J. Puppala, A. Pradhan, X. Yu, N. Zhang, Environ. Geotech. 3, 190 (2016)

    Article  Google Scholar 

  29. Y. Zhao, B. Si, Z. Zhang, M. Li, H. He, R.L. Hill, Agric. For. Meteorol. 274, 95 (2019)

    Article  ADS  Google Scholar 

  30. T. Arkhangelskaya, K. Lukyashchenko, Biosyst. Eng. 168, 83 (2018)

    Article  Google Scholar 

  31. B. Dai, Y. Zhang, H. Ding, Y. Xu, Z. Liu, Energies 15, 1 (2022)

    Google Scholar 

  32. Y. G. Chen, X. M. Liu, X. Mu, W. M. Ye, Y. J. Cui, B. Chen, and D. B. Wu, Adv. Civ. Eng. 2018, (2018).

  33. F. Peng, Y. Tan, D. Sun, Ann. Nucl. Energy 154, 108142 (2021)

    Article  Google Scholar 

  34. M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, M.S. Kim, Comput. Geotech. 104, 109 (2018)

    Article  Google Scholar 

  35. R. Wan, D. Kong, J. Kang, T. Yin, J. Ning, J. Ma, Energy Build. 174, 1 (2018)

    Article  Google Scholar 

  36. T.M. Do, G.O. Kang, Y.S. Kim, Appl. Therm. Eng. 143, 607 (2018)

    Article  Google Scholar 

  37. J.K. Lee, J.Q. Shang, Can. Geotech. J. 51, 570 (2014)

    Article  Google Scholar 

  38. M. Fall, J.C. Célestin, F.S. Han, Miner. Eng. 22, 840 (2009)

    Article  Google Scholar 

  39. J.C.H. Célestin, M. Fall, Int. J. Mining Reclam. Environ. 23, 274 (2009)

    Article  Google Scholar 

  40. N. Zhang, Z. Wang, Int. J. Therm. Sci. 117, 172 (2017)

    Article  Google Scholar 

  41. H. He, D. He, J. Jin, K.M. Smits, M. Dyck, Q. Wu, B. Si, J. Lv, Earth-Sci. Rev. 211, 103419 (2020)

    Article  Google Scholar 

  42. D. Patwa, A. Chandra, K. Ravi, S. Sreedeep, J. Mater. Civ. Eng. 33, 1 (2021)

    Article  Google Scholar 

  43. M. S. Kersten, Highw. Res. Board Spec. Rep. (1952).

  44. G. S. Campbell, in (1985).

  45. M.V.B.B. Gangadhara Rao, D.N. Singh, Can. Geotech. J. 36, 767 (1999)

    Article  Google Scholar 

  46. O. E. Johansen, in (1977).

  47. J. Côté, J.M. Konrad, Can. Geotech. J. 42, 443 (2005)

    Article  Google Scholar 

  48. S. Siddiqua, B. Tabiatnejad, G. Siemens, Environ. Earth Sci. 77, 1 (2018)

    Article  ADS  Google Scholar 

  49. S. Lu, T. Ren, Y. Gong, R. Horton, Soil Sci. Soc. Am. J. 71, 8 (2007)

    Article  ADS  Google Scholar 

  50. S. Nikoosokhan, H. Nowamooz, C. Chazallon, Geomech. Geoeng. 11, 149 (2016)

    Article  Google Scholar 

  51. V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 37, 1 (2016)

    Article  Google Scholar 

  52. D. Barry-Macaulay, A. Bouazza, B. Wang, R.M. Singh, Can. Geotech. J. 52, 1892 (2015)

    Article  Google Scholar 

  53. H. He, M. Li, M. Dyck, B. Si, J. Wang, J. Lv, Int. Commun. Heat Mass Transf. 116, 104602 (2020)

    Article  Google Scholar 

  54. V.R. Tarnawski, W.H. Leong, M. McCombie, G. Bovesecchi, Int. J. Thermophys. 43, 1 (2022)

    Article  Google Scholar 

  55. N.H. Abu-Hamdeh, Biosyst. Eng. 86, 97 (2003)

    Article  Google Scholar 

  56. K.I. Lukiashchenko, T.A. Arkhangelskaya, Eurasian Soil Sci. 51, 183 (2018)

    Article  ADS  Google Scholar 

  57. P. Ocłoń, M. Bittelli, P. Cisek, E. Kroener, M. Pilarczyk, D. Taler, R.V. Rao, A. Vallati, Appl. Therm. Eng. 108, 233 (2016)

    Article  Google Scholar 

  58. O.E. Gouda, A.Z. El Dein, I.E.T. Gener, Transm. Distrib. 9, 2180 (2015)

    Article  Google Scholar 

  59. S. Yoon, J.S. Jeon, G.Y. Kim, J.H. Seong, M.H. Baik, Ann. Nucl. Energy 125, 18 (2019)

    Article  Google Scholar 

  60. Y. Zhao, B. Si, Soil Tillage Res. 189, 64 (2019)

    Article  Google Scholar 

  61. P.N. Mishra, S. Surendran, V.K. Gadi, R.A. Joseph, D.N. Arnepalli, J. Hazardous, Toxic Radioact. Waste 21, 1 (2017)

    Google Scholar 

  62. I. Decagon Devices, 1 (2016).

  63. Astm, Annu. B. ASTM Stand. 3 (2010).

  64. M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36, 327 (2010)

    Article  Google Scholar 

  65. Y. Zhi Tan, Z. Yang Xie, F. Peng, F. Hong Qian, H. Jun Ming, Environ. Earth Sci. 80, 1 (2021)

    Google Scholar 

  66. IS 2720: Part 4, Bur. Indian Stand. New Delhi, India. Reaffirmed, 1 (1985).

  67. IS: 2720 (part 5):1985, Bur. Indian Stand. New Delhi, India. Reaffirmed, 1 (1985).

  68. IS.2720 (Part 3):1980, Bur. Indian Stand. New Delhi, India. Reaffirmed, 1 (1980).

  69. IS : 2720 (Part VII-1980), Bur. Indian Stand. 1 (2011).

  70. A. Priyadarshee, D. Gupta, V. Kumar, V. Sharma, Int. J. Geosynth. Gr. Eng. 1, 1 (2015)

    Google Scholar 

  71. K.L. Bristow, R.D. White, G.J. Kluitenberg, Soil Res. 32, 447 (1994)

    Article  Google Scholar 

  72. G. Bovesecchi, P. Coppa, S. Corasaniti, M. Potenza, Int. J. Thermophys. 39, 1 (2018)

    Article  Google Scholar 

  73. P.K. Sah, S. Sreedeep, Environ. Geotech. 1, 179 (2014)

    Article  Google Scholar 

  74. V.R. Tarnawski, T. Momose, M.L. McCombie, W.H. Leong, Int. J. Thermophys. 36, 119 (2015)

    Article  ADS  Google Scholar 

  75. X. Liu, G. Cai, S.S.C. Congress, L. Liu, S. Liu, J. Mater. Civ. Eng. 32, 1 (2020)

    Google Scholar 

  76. V. R. Tarnawski, M. L. McCombie, W. H. Leong, P. Coppa, S. Corasaniti, and G. Bovesecchi, Int. J. Thermophys. 39, (2018).

  77. A.Y. Mady, E.V. Shein, S.S. Faculty, Physics 12, 56 (2016)

    Google Scholar 

  78. N. P. López-Acosta, D. M. Portillo-Arreguín, D. F. Barba-Galdámez, and R. M. Singh, Geomech. Energy Environ. 100376 (2022).

  79. X. Yan, Z. Duan, Q. Sun, Environ. Earth Sci. 80, 1 (2021)

    Article  Google Scholar 

  80. H.F. Li, M.Q. Chen, B.A. Fu, B. Liang, Appl. Therm. Eng. 151, 55 (2019)

    Article  Google Scholar 

  81. C. Ould-Lahoucine, H. Sakashita, T. Kumada, Nucl. Eng. Des. 216, 1 (2002)

    Article  Google Scholar 

  82. W. Zhang, R. Bai, X. Xu, W. Liu, Int. Commun. Heat Mass Transf. 129, 105738 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Prof. Sreedeep S., Indian Institute of Technology Guwahati, Assam, and Indian Institute of Technology Guwahati, Assam, for providing the facilities to conduct the experiments and their kind support during this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PKS contributed to conceptualization, methodology, laboratory work, writing—original draft preparation; SSK contributed to conceptualization, formal analysis, writing—review and editing, and supervision; SS contributed to conceptualization, formal analysis, review and editing.

Corresponding author

Correspondence to Pawan Kishor Sah.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, P.K., Kumar, S.S. & Sreedeep, S. Thermophysical Properties of Bentonite–Sand/Fly Ash-Based Backfill Materials for Underground Power Cable. Int J Thermophys 44, 57 (2023). https://doi.org/10.1007/s10765-023-03163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03163-9

Keywords

Navigation