Skip to main content
Log in

Measurement of Microscopic Thermal Diffusivity Distribution for Ryugu Sample by Infrared Lock-in Periodic Heating Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermophysical properties of small Solar System bodies are essential to be determined, on which the thermal evolution of small bodies largely depends. The carbonaceous asteroid Ryugu is one of the small undifferentiated bodies formed in the early Solar System. Hayabusa2 explored the asteroid Ryugu and returned the surface samples in 2020 for detailed on-ground investigation, including measurements of thermal properties. Because the available sample amount was limited, this study developed a novel method to measure the thermal diffusivity of small and irregularly shaped samples of about 1 mm in diameter by combining lock-in thermography and periodic heating methods on the microscale. This method enables us to measure the thermal diffusivity of both flat-plate and granular shape samples by selecting the suitable detecting direction of the temperature response. Especially, when the sample has a flat-plate shape, the anisotropic distribution of the in-plane thermal diffusivity can be evaluated. This method was applied to six Ryugu samples, and the detailed anisotropic distribution of the thermal diffusivity was obtained. The measurement results showed that the samples show local thermal anisotropy caused by cracks and voids. The average thermal diffusivity among all samples was (2.8 to 5.8) × 10−7 m2·s. Based on the density and specific heat of the samples obtained independently, the thermal effusivity was estimated to be 791 J·(s1/2·m2·K) to 1253 J·(s1/2·m2·K), which is defined as the resistance of surface temperature to the change of thermal input. The determined thermal effusivity, often called thermal inertia in planetary science, is larger than the observed value of 225 ± 45 J· (s1/2·m2·K) of the asteroid Ryugu's surface, obtained from the diurnal temperature change of the rotating asteroid by a thermal infrared camera onboard Hayabuas2. This difference is likely to be attributed to the difference in the analytical scale between the sample and the surface boulders compared with the thermal diffusion length. Consequently, it was found that the present result is more representative of the thermal diffusivity and thermal inertia of local part of individual Ryugu particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Yokoyama, K. Nagashima, I. Nakai, E.D. Young, Y. Abe, J. Aléon, C.M.O. Alexander, S. Amari, Y. Amelin, K. Bajo, M. Bizzarro, A. Bouvier, R.W. Carlson, M. Chaussidon, B.-G. Choi, N. Dauphas, A.M. Davis, T. di Rocco, W. Fujiya, R. Fukai, I. Gautam, M.K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G.R. Huss, K. Ichida, T. Iizuka, T.R. Ireland, A. Ishikawa, M. Ito, S. Itoh, N. Kawasaki, N.T. Kita, K. Kitajima, T. Kleine, S. Komatani, A.N. Krot, M.-C. Liu, Y. Masuda, K.D. McKeegan, M. Morita, K. Motomura, F. Moynier, A. Nguyen, L. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S.S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, R.J. Walker, K. Yamashita, Q.-Z. Yin, S. Yoneda, H. Yui, A.-C. Zhang, H.C. Connolly, D.S. Lauretta, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, M. Abe, M. Arakawa, A. Fujii, M. Hayakawa, N. Hirata, N. Hirata, R. Honda, C. Honda, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, K. Kawahara, S. Kikuchi, K. Kitazato, K. Matsumoto, M. Matsuoka, T. Michikami, Y. Mimasu, A. Miura, T. Morota, S. Nakazawa, N. Namiki, H. Noda, R. Noguchi, N. Ogawa, K. Ogawa, T. Okada, C. Okamoto, G. Ono, M. Ozaki, T. Saiki, N. Sakatani, H. Sawada, H. Senshu, Y. Shimaki, K. Shirai, S. Sugita, Y. Takei, H. Takeuchi, S. Tanaka, E. Tatsumi, F. Terui, Y. Tsuda, R. Tsukizaki, K. Wada, S. Watanabe, M. Yamada, T. Yamada, Y. Yamamoto, H. Yano, Y. Yokota, K. Yoshihara, M. Yoshikawa, K. Yoshikawa, S. Furuya, K. Hatakeda, T. Hayashi, Y. Hitomi, K. Kumagai, A. Miyazaki, A. Nakato, M. Nishimura, H. Soejima, A. Suzuki, T. Yada, D. Yamamoto, K. Yogata, M. Yoshitake, S. Tachibana, H. Yurimoto, Science 15, 7850 (2022)

    Google Scholar 

  2. D.J. Tholen, Asteroids II, in Matthews. ed. by R.P. Binzel, T. Gehrels, M. Shapley (University of Arizona Press, Tucson, 1989), p.1139

    Google Scholar 

  3. F. E. DeMeo, C. M. O. Alexander, K. J. Walsh, C. R. Chapman, in Asteroids IV, edited by P. Michel (University of Arizona Press, 2015), p. 13

  4. T. Okada, T. Fukuhara, S. Tanaka, M. Taguchi, T. Arai, H. Senshu, N. Sakatani, Y. Shimaki, H. Demura, Y. Ogawa, K. Suko, T. Sekiguchi, T. Kouyama, J. Takita, T. Matsunaga, T. Imamura, T. Wada, S. Hasegawa, J. Helbert, T.G. Müller, A. Hagermann, J. Biele, M. Grott, M. Hamm, M. Delbo, N. Hirata, N. Hirata, Y. Yamamoto, S. Sugita, N. Namiki, K. Kitazato, M. Arakawa, S. Tachibana, H. Ikeda, M. Ishiguro, K. Wada, C. Honda, R. Honda, Y. Ishihara, K. Matsumoto, M. Matsuoka, T. Michikami, A. Miura, T. Morota, H. Noda, R. Noguchi, K. Ogawa, K. Shirai, E. Tatsumi, H. Yabuta, Y. Yokota, M. Yamada, M. Abe, M. Hayakawa, T. Iwata, M. Ozaki, H. Yano, S. Hosoda, O. Mori, H. Sawada, T. Shimada, H. Takeuchi, R. Tsukizaki, A. Fujii, C. Hirose, S. Kikuchi, Y. Mimasu, N. Ogawa, G. Ono, T. Takahashi, Y. Takei, T. Yamaguchi, K. Yoshikawa, F. Terui, T. Saiki, S. Nakazawa, M. Yoshikawa, S. Watanabe, Y. Tsuda, Nature 579, 518 (2020)

    Article  ADS  Google Scholar 

  5. E. Nakamura, K. Kobayashi, R. Tanaka, T. Kunihiro, H. Kitagawa, C. Potiszil, T. Ota, C. Sakaguchi, M. Yamanaka, D.M. Ratnayake, H. Tripathi, R. Kumar, M.-L. Avramescu, H. Tsuchida, Y. Yachi, H. Miura, M. Abe, R. Fukai, S. Furuya, K. Hatakeda, T. Hayashi, Y. Hitomi, K. Kumagai, A. Miyazaki, A. Nakato, M. Nishimura, T. Okada, H. Soejima, S. Sugita, A. Suzuki, T. Usui, T. Yada, D. Yamamoto, K. Yogata, M. Yoshitake, M. Arakawa, A. Fujii, M. Hayakawa, N. Hirata, N. Hirata, R. Honda, C. Honda, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, K. Kawahara, S. Kikuchi, K. Kitazato, K. Matsumoto, M. Matsuoka, T. Michikami, Y. Mimasu, A. Miura, T. Morota, S. Nakazawa, N. Namiki, H. Noda, R. Noguchi, N. Ogawa, K. Ogawa, C. Okamoto, G. Ono, M. Ozaki, T. Saiki, N. Sakatani, H. Sawada, H. Senshu, Y. Shimaki, K. Shirai, Y. Takei, H. Takeuchi, S. Tanaka, E. Tatsumi, F. Terui, R. Tsukizaki, K. Wada, M. Yamada, T. Yamada, Y. Yamamoto, H. Yano, Y. Yokota, K. Yoshihara, M. Yoshikawa, K. Yoshikawa, M. Fujimoto, S. Watanabe, Y. Tsuda, Proc. Jpn. Acad. Ser. B 98, 227–228 (2022)

    Article  ADS  Google Scholar 

  6. S. Sugita, R. Honda, T. Morota, S. Kameda, H. Sawada, E. Tatsumi, M. Yamada, C. Honda, Y. Yokota, T. Kouyama, N. Sakatani, K. Ogawa, H. Suzuki, T. Okada, N. Namiki, S. Tanaka, Y. Iijima, K. Yoshioka, M. Hayakawa, Y. Cho, M. Matsuoka, N. Hirata, N. Hirata, H. Miyamoto, D. Domingue, M. Hirabayashi, T. Nakamura, T. Hiroi, T. Michikami, P. Michel, R.L. Ballouz, O.S. Barnouin, C.M. Ernst, S.E. Schröder, H. Kikuchi, R. Hemmi, G. Komatsu, T. Fukuhara, M. Taguchi, T. Arai, H. Senshu, H. Demura, Y. Ogawa, Y. Shimaki, T. Sekiguchi, T.G. Müller, A. Hagermann, T. Mizuno, H. Noda, K. Matsumoto, R. Yamada, Y. Ishihara, H. Ikeda, H. Araki, K. Yamamoto, S. Abe, F. Yoshida, A. Higuchi, S. Sasaki, S. Oshigami, S. Tsuruta, K. Asari, S. Tazawa, M. Shizugami, J. Kimura, T. Otsubo, H. Yabuta, S. Hasegawa, M. Ishiguro, S. Tachibana, E. Palmer, R. Gaskell, L. le Corre, R. Jaumann, K. Otto, N. Schmitz, P.A. Abell, M.A. Barucci, M.E. Zolensky, F. Vilas, F. Thuillet, C. Sugimoto, N. Takaki, Y. Suzuki, H. Kamiyoshihara, M. Okada, K. Nagata, M. Fujimoto, M. Yoshikawa, Y. Yamamoto, K. Shirai, R. Noguchi, N. Ogawa, F. Terui, S. Kikuchi, T. Yamaguchi, Y. Oki, Y. Takao, H. Takeuchi, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, C. Hirose, S. Nakazawa, S. Hosoda, O. Mori, T. Shimada, S. Soldini, T. Iwata, M. Abe, H. Yano, R. Tsukizaki, M. Ozaki, K. Nishiyama, T. Saiki, S. Watanabe, Y. Tsuda, Science 364, 24–89 (2019)

    Article  Google Scholar 

  7. E. Tatsumi, N. Sakatani, L. Riu, M. Matsuoka, R. Honda, T. Morota, S. Kameda, T. Nakamura, M. Zolensky, R. Brunetto, T. Hiroi, S. Sasaki, S. Watanabe, S. Tanaka, J. Takita, C. Pilorget, J. de León, M. Popescu, J.L. Rizos, J. Licandro, E. Palomba, D. Domingue, F. Vilas, H. Campins, Y. Cho, K. Yoshioka, H. Sawada, Y. Yokota, M. Hayakawa, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, K. Ogawa, K. Kitazato, N. Hirata, N. Hirata, Y. Tsuda, M. Yoshikawa, T. Saiki, F. Terui, S. Nakazawa, Y. Takei, H. Takeuchi, Y. Yamamoto, T. Okada, Y. Shimaki, K. Shirai, S. Sugita, Nat. Commun. 12, 1 (2021)

    Article  Google Scholar 

  8. H. Campins, J. de León, A. Morbidelli, J. Licandro, J. Gayon-Markt, M. Delbo, P. Michel, Astron. J. 146, 26 (2013)

    Article  ADS  Google Scholar 

  9. K.J. Walsh, M. Delbó, W.F. Bottke, D. Vokrouhlický, D.S. Lauretta, Icarus 225, 283 (2013)

    Article  ADS  Google Scholar 

  10. C.P. Opeil, G.J. Consolmagno, D.T. Britt, Icarus 208, 449 (2010)

    Article  ADS  Google Scholar 

  11. G. J. Consolmagno, Thermal History Models of Icy Satellites, Master Thesis, Massachusetts Institute of Technology, (1975)

  12. B.A. Cohen, R.F. Coker, Icarus 145, 369 (2000)

    Article  ADS  Google Scholar 

  13. R.J. Macke, G.J. Consolmagno, D.T. Britt, Meteorit. Planet. Sci. 46, 1842 (2011)

    Article  ADS  Google Scholar 

  14. D. Ostrowski, K. Bryson, Planet. Space Sci. 165, 148 (2019)

    Article  ADS  Google Scholar 

  15. T. Ishizaki, T. Kawahara, K. Tomioka, S. Tanaka, N. Sakatani, T. Nakamura, H. Nagano, Int. J. Thermophys. 43, 97 (2022)

    Article  ADS  Google Scholar 

  16. C.P. Opeil, G.J. Consolmagno, D.J. Safarik, D.T. Britt, Meteorit. Planet. Sci. 47, 319 (2012)

    Article  ADS  Google Scholar 

  17. T. Nakamura, M. Matsumoto, K. Amano, Y. Enokido, M.E. Zolensky, T. Mikouchi, H. Genda, S. Tanaka, M.Y. Zolotov, K. Kurosawa, S. Wakita, R. Hyodo, H. Nagano, D. Nakashima, Y. Takahashi, Y. Fujioka, M. Kikuiri, E. Kagawa, M. Matsuoka, A.J. Brearley, A. Tsuchiyama, M. Uesugi, J. Matsuno, Y. Kimura, M. Sato, R.E. Milliken, E. Tatsumi, S. Sugita, T. Hiroi, K. Kitazato, D. Brownlee, D.J. Joswiak, M. Takahashi, K. Ninomiya, T. Takahashi, T. Osawa, K. Terada, F.E. Brenker, B.J. Tkalcec, L. Vincze, R. Brunetto, A. Aléon-Toppani, Q.H.S. Chan, M. Roskosz, J.-C. Viennet, P. Beck, E.E. Alp, T. Michikami, Y. Nagaashi, T. Tsuji, Y. Ino, J. Martinez, J. Han, A. Dolocan, R.J. Bodnar, M. Tanaka, H. Yoshida, K. Sugiyama, A.J. King, K. Fukushi, H. Suga, S. Yamashita, T. Kawai, K. Inoue, A. Nakato, T. Noguchi, F. Vilas, A.R. Hendrix, C. Jaramillo-Correa, D.L. Domingue, G. Dominguez, Z. Gainsforth, C. Engrand, J. Duprat, S.S. Russell, E. Bonato, C. Ma, T. Kawamoto, T. Wada, S. Watanabe, R. Endo, S. Enju, L. Riu, S. Rubino, P. Tack, S. Takeshita, Y. Takeichi, A. Takeuchi, A. Takigawa, D. Takir, T. Tanigaki, A. Taniguchi, K. Tsukamoto, T. Yagi, S. Yamada, K. Yamamoto, Y. Yamashita, M. Yasutake, K. Uesugi, I. Umegaki, I. Chiu, T. Ishizaki, S. Okumura, E. Palomba, C. Pilorget, S.M. Potin, A. Alasli, S. Anada, Y. Araki, N. Sakatani, C. Schultz, O. Sekizawa, S.D. Sitzman, K. Sugiura, M. Sun, E. Dartois, E. de Pauw, Z. Dionnet, Z. Djouadi, G. Falkenberg, R. Fujita, T. Fukuma, I.R. Gearba, K. Hagiya, M.Y. Hu, T. Kato, T. Kawamura, M. Kimura, M.K. Kubo, F. Langenhorst, C. Lantz, B. Lavina, M. Lindner, J. Zhao, B. Vekemans, D. Baklouti, B. Bazi, F. Borondics, S. Nagasawa, G. Nishiyama, K. Nitta, J. Mathurin, T. Matsumoto, I. Mitsukawa, H. Miura, A. Miyake, Y. Miyake, H. Yurimoto, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, H.C. Connolly, D.S. Lauretta, M. Yoshitake, M. Yoshikawa, K. Yoshikawa, K. Yoshihara, Y. Yokota, K. Yogata, H. Yano, Y. Yamamoto, D. Yamamoto, M. Yamada, T. Yamada, T. Yada, K. Wada, T. Usui, R. Tsukizaki, F. Terui, H. Takeuchi, Y. Takei, A. Iwamae, H. Soejima, K. Shirai, Y. Shimaki, H. Senshu, H. Sawada, T. Saiki, M. Ozaki, G. Ono, T. Okada, N. Ogawa, K. Ogawa, R. Noguchi, H. Noda, M. Nishimura, N. Namiki, S. Nakazawa, T. Morota, A. Miyazaki, A. Miura, Y. Mimasu, K. Matsumoto, K. Kumagai, T. Kouyama, S. Kikuchi, K. Kawahara, S. Kameda, T. Iwata, Y. Ishihara, M. Ishiguro, H. Ikeda, S. Hosoda, R. Honda, C. Honda, Y. Hitomi, N. Hirata, N. Hirata, T. Hayashi, M. Hayakawa, K. Hatakeda, S. Furuya, R. Fukai, A. Fujii, Y. Cho, M. Arakawa, M. Abe, S. Watanabe, Y. Tsuda, Science 16, 8671 (2022)

    Google Scholar 

  18. H.S. Carslaw, J.J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford Science Publications, Oxford, 1959), p.263

    Google Scholar 

  19. T. Ishizaki, H. Nagano, Infrared Phys. Technol. 99, 248 (2019)

    Article  ADS  Google Scholar 

  20. T. Ishizaki, H. Nagano, Int. J. Thermophys. 36, 2577 (2015)

    Article  ADS  Google Scholar 

  21. A. Mendioroz, R. Fuente-Dacal, E. Apianiz, A. Salazar, Rev. Sci. Instrum. 80, 1 (2009)

    Article  Google Scholar 

  22. S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto, Y.N. Miura, C. Okamoto, H. Yano, S. Yamanouchi, P. Michel, Y. Zhang, S. Schwartz, F. Thuillet, H. Yurimoto, T. Nakamura, T. Noguchi, H. Yabuta, H. Naraoka, A. Tsuchiyama, N. Imae, K. Kurosawa, A.M. Nakamura, K. Ogawa, S. Sugita, T. Morota, R. Honda, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, M. Hayakawa, M. Matsuoka, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, T. Yoshimitsu, T. Kubota, H. Demura, T. Yada, M. Nishimura, K. Yogata, A. Nakato, M. Yoshitake, A.I. Suzuki, S. Furuya, K. Hatakeda, A. Miyazaki, K. Kumagai, T. Okada, M. Abe, T. Usui, T.R. Ireland, M. Fujimoto, T. Yamada, M. Arakawa, H.C. Connolly, A. Fujii, S. Hasegawa, N. Hirata, N. Hirata, C. Hirose, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, S. Kikuchi, K. Kitazato, D.S. Lauretta, G. Libourel, B. Marty, K. Matsumoto, T. Michikami, Y. Mimasu, A. Miura, O. Mori, K. Nakamura-Messenger, N. Namiki, A.N. Nguyen, L.R. Nittler, H. Noda, R. Noguchi, N. Ogawa, G. Ono, M. Ozaki, H. Senshu, T. Shimada, Y. Shimaki, K. Shirai, S. Soldini, T. Takahashi, Y. Takei, H. Takeuchi, R. Tsukizaki, K. Wada, Y. Yamamoto, K. Yoshikawa, K. Yumoto, M.E. Zolensky, S. Nakazawa, F. Terui, S. Tanaka, T. Saiki, M. Yoshikawa, S. Watanabe, Y. Tsuda, Science 375, 1011 (2022)

    Article  ADS  Google Scholar 

  23. T. Morota, S. Sugita, Y. Cho, M. Kanamaru, E. Tatsumi, N. Sakatani, R. Honda, N. Hirata, H. Kikuchi, M. Yamada, Y. Yokota, S. Kameda, M. Matsuoka, H. Sawada, C. Honda, T. Kouyama, K. Ogawa, H. Suzuki, K. Yoshioka, M. Hayakawa, N. Hirata, M. Hirabayashi, H. Miyamoto, T. Michikami, T. Hiroi, R. Hemmi, O.S. Barnouin, C.M. Ernst, K. Kitazato, T. Nakamura, L. Riu, H. Senshu, H. Kobayashi, S. Sasaki, G. Komatsu, N. Tanabe, Y. Fujii, T. Irie, M. Suemitsu, N. Takaki, C. Sugimoto, K. Yumoto, M. Ishida, H. Kato, K. Moroi, D. Domingue, P. Michel, C. Pilorget, T. Iwata, M. Abe, M. Ohtake, Y. Nakauchi, K. Tsumura, H. Yabuta, Y. Ishihara, R. Noguchi, K. Matsumoto, A. Miura, N. Namiki, S. Tachibana, M. Arakawa, H. Ikeda, K. Wada, T. Mizuno, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, H. Yano, M. Ozaki, H. Takeuchi, Y. Yamamoto, T. Okada, Y. Shimaki, K. Shirai, Y. Iijima, H. Noda, S. Kikuchi, T. Yamaguchi, N. Ogawa, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, S. Nakazawa, F. Terui, S. Tanaka, M. Yoshikawa, T. Saiki, S. Watanabe, Y. Tsuda, Science 368, 654 (2020)

    Article  ADS  Google Scholar 

  24. Y. Shimaki, H. Senshu, N. Sakatani, T. Okada, T. Fukuhara, S. Tanaka, M. Taguchi, T. Arai, H. Demura, Y. Ogawa, K. Suko, T. Sekiguchi, T. Kouyama, S. Hasegawa, J. Takita, T. Matsunaga, T. Imamura, T. Wada, K. Kitazato, N. Hirata, N. Hirata, R. Noguchi, S. Sugita, S. Kikuchi, T. Yamaguchi, N. Ogawa, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, H. Takeuchi, Y. Yamamoto, M. Yamada, K. Shirai, Y.I. Iijima, K. Ogawa, S. Nakazawa, F. Terui, T. Saiki, M. Yoshikawa, Y. Tsuda, S.I. Watanabe, Icarus 348, 113835 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TI conceptualization, methodology, investigation, formal analysis, preparing figures, writing—original draft. HN, conceptualization, resources, writing—review & editing, supervision, funding acquisition. ST, and SN conceptualization, investigation, resources, writing—review & editing. TN contributed to organizing the research of the analysis of the properties of Ryugu samples. TO contributed to Hayabusa2 mission sample collection; apparatus development. RF, and AA contributed to measurement; analysis. TM, MK, KA, and EK contributed to the research of the analysis of the properties of Ryugu samples. HY, TN, RO, HY, HN, KS, and ST contributed to organizing the research of the analysis of the properties of Ryugu samples. SW, and YT contributed to Hayabusa2 mission sample collection.

Corresponding author

Correspondence to Hosei Nagano.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 13th Asian Thermophysical Properties Conference.

Appendix

Appendix

Figures 11, 12, 13, 14, 15, 16 and 17 show the thermal diffusivity distribution and experimental plots of phase lag vs radial distance with a linear approximation line used in thermal diffusivity analysis at the angles of 0° and 90° as representative angles. When analyzing the slope of the phase lag with respect to the radial distance, the range of phase lag used in the analysis in each direction was fixed to be constant to eliminate arbitrariness in the selection of the analysis region and to maintain the same quality of the scattering of the results. The upper and lower limits of the phase lag range used in the analysis are indicated by the red plots in figures (b, c). The slope is calculated by a linear approximation for the phase lag in this range. The linear approximation line of the A0026 sample shown in Fig. 15 does not seem to fit to the whole experimental plots, this is due to the following. Figure 15b and c show that the change of the phase lag decreases around the distance of 0.2 to 0.4 mm, and this is possibly due to the effect of the reflected temperature wave at the sample edge (0°.) or on the back surface on the sample (90°). The fitting analysis was, therefore, performed for the phase lag plots only in the region closer to the heating point.

Fig. 11
figure 11

(a) thermal diffusivity distribution of the C0002-plate 3 sample and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 12
figure 12

(a) thermal diffusivity distribution of the C0002-plate 4 sample measured under vacuum pressure and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 13
figure 13

(a) thermal diffusivity distribution of the C0002-plate 4 sample measured under atmospheric pressure and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 14
figure 14

(a) thermal diffusivity distribution of the C0025 sample and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 15
figure 15

(a) thermal diffusivity distribution of the A0026 sample and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 16
figure 16

(a) thermal diffusivity distribution of the C0033 sample and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Fig. 17
figure 17

(a) thermal diffusivity distribution of the C0002-plate 3 sample and experimental plots of phase lag vs distance and a linear approximation line used to obtain the thermal diffusivity at the angle of (b) 0° and (c) 90°

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizaki, T., Nagano, H., Tanaka, S. et al. Measurement of Microscopic Thermal Diffusivity Distribution for Ryugu Sample by Infrared Lock-in Periodic Heating Method. Int J Thermophys 44, 51 (2023). https://doi.org/10.1007/s10765-023-03158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03158-6

Keywords

Navigation