Skip to main content

Advertisement

Log in

High-Pressure Densities and Derived Thermodynamic Properties of Cyclopentane/n-Octane Mixtures from 293.15 K to 363.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Alkane mixtures are important chemicals used in different fields. The pρTx data of the mixtures are essential for the establishment of the equation of state. In this work, the liquid densities of cyclopentane/n-octane mixtures at temperatures from 293.15 K to 363.15 K and at pressures up to 70 MPa were reported for the first time. The measurements were carried out using the experimental system based on the vibrating tube method. The combined expanded uncertainty for the present density measurement was evaluated to be less than 0.8 kg·m−3. Experimental density data of the cyclopentane/n-octane mixtures were fitted as the modified Tammann–Tait equation. The derived thermodynamic properties including isothermal compressibility (kT) and thermal expansivity (αp) were determined from the modified Tammann–Tait equation, and the results were analyzed. In addition, the PC-SAFT equation combined with Berthelot–Lorentz mixing rule was used to predict the densities of the mixtures, and the results show that the PC-SAFT equation can give good results for cyclopentane/n-octane mixtures when the binary interaction coefficient set to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. E.J. Hu, H.Z. Tian, X.Y. Zhang, X.T. Li, Z.H. Huang, Fuel 188, 90–97 (2017)

    Article  Google Scholar 

  2. G. Gonca, B. Sahin, M.F. Hocaoglu, Int. J. Hydrogen Energy 47, 12421–12431 (2022)

    Article  Google Scholar 

  3. H.K. Suh, C.S. Lee, Renew. Sustain. Energy Rev. 15, 1098–1116 (2011)

    Article  Google Scholar 

  4. R. Romeo, E.W. Lemmon, Int. J. Thermophys. 43, 146 (2022)

    Article  ADS  Google Scholar 

  5. R.P. Mendo-Sanchez, A. Ruiz-Liamas, A. Pimentel-Rodas, L.A. Galicia-Luna, J. Chem. Thermodyn. 172, 106830 (2022)

    Article  Google Scholar 

  6. W.J. Tay, J.P.M. Trusler, J. Chem. Thermodyn. 124, 107–122 (2018)

    Article  Google Scholar 

  7. T.V.M. Santos, M.F.V. Pereira, H.M.N.T. Avelino, F.J.P. Caetano, J.M.N.A. Fareleira, Fluid Phase Equilib. 453, 46–57 (2017)

    Article  Google Scholar 

  8. D.J.L. Prak, J. Chem. Eng. Data 66, 3165–3177 (2021)

    Article  Google Scholar 

  9. A.A. Abdussalam, G.R. Ivaniš, I.R. Radović, M.L. Kijevčcnin, J. Chem. Thermodyn. 100, 89–99 (2016)

    Article  Google Scholar 

  10. J.M. Milanesio, J.C. Hassler, E. Kiran, Ind. Eng. Chem. 52, 6592–6609 (2013)

    Article  Google Scholar 

  11. N. Lokachari, S.W. Wagnon, G. Kukkadapu, W.J. Pitz, H.J. Curran, Combust. Flame 225, 255–271 (2021)

    Article  Google Scholar 

  12. X.P. Wang, K. Kang, H.X. Lang, J. Chem. Thermodyn. 103, 310–315 (2016)

    Article  Google Scholar 

  13. K. Kang, X.P. Wang, F.X. Yang, J.M. Prausnitz, J. Chem. Eng. Data 61, 2851–2858 (2016)

    Article  Google Scholar 

  14. K. Kang, X.D. Liang, G.M. Kontogeorgis, X.P. Wang, J. Chem. Thermodyn. 135, 107–115 (2019)

    Article  Google Scholar 

  15. B. Lagourette, C. Boned, H. Saintguirons, P. Xans, H. Zhou, Meas. Sci. Technol. 3, 699–703 (1992)

    Article  ADS  Google Scholar 

  16. W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  ADS  Google Scholar 

  17. ISO/IEC Guide 98-3. Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995); International Organization for Standardization: Geneve (2008)

  18. R.D. Chirico, M. Frenkel, J.W. Magee, V. Diky, C.D. Muzny, A.F. Kazakov, K. Kroenlein, I. Abdulagatov, G.R. Hardin, W.E. Acree, J.F. Brenneke, P.L. Brown, P.T. Cummings, T.W. de Loos, D.G. Friend, A.R.H. Goodwin, L.D. Hansen, W.M. Haynes, N. Koga, A. Mandelis, K.N. Marsh, P.M. Mathias, C. McCabe, J.P. O’Connell, A. Padua, V. Rives, C. Schick, J.P.M. Trusler, S. Vyazovkin, R.D. Weir, J.T. Wu, J. Chem. Eng. Data 58, 2699–2716 (2013)

    Article  Google Scholar 

  19. Z. Liu, Y.T. Ma, X.P. Wang, J. Chem. Thermodyn. 177, 106953 (2023)

    Article  Google Scholar 

  20. J.H. Dymond, R. Malhotra, Int. J. Thermophys. 9, 941–951 (1988)

    Article  ADS  Google Scholar 

  21. T.S. Banipal, S.K. Garg, J.C. Ahluwalia, J. Chem. Thermodyn. 23, 923–931 (1991)

    Article  Google Scholar 

  22. M. Dix, J.M.N.A. Fareleira, Y. Takaishi, W.A. Wakeham, Int. J. Thermophys. 12, 357–370 (1991)

    Article  ADS  Google Scholar 

  23. L. Lugo, M.J.P. Comunas, E.R. Lopez, J. Fernandez, Fluid Phase Equilib. 186, 235–255 (2001)

    Article  Google Scholar 

  24. L. Moravkova, J. Linek, J. Chem. Thermodynamics 35, 1119–1127 (2003)

    Article  Google Scholar 

  25. I.M. Abdulagatov, N.D. Azizov, J. Chem. Thermodyn. 38, 1402–1415 (2006)

    Article  Google Scholar 

  26. A.R.H. Goodwin, E.P. Donzier, O. Vancauwenberghe, A.D. Fitt, K.A. Ronaldson, W.A. Wakeham, M.M. de Lara, F. Marty, B. Mercier, J. Chem. Eng. Data 51, 190–208 (2006)

    Article  Google Scholar 

  27. A. Kumagai, D. Tomida, C. Yokoyama, Int. J. Thermophys. 27, 376–393 (2006)

    Article  ADS  Google Scholar 

  28. L. Moravkova, Z. Wagner, K. Aim, J. Linek, J. Chem. Thermodyn. 38, 861–870 (2006)

    Article  Google Scholar 

  29. L. Moravkova, Z. Wagner, J. Linek, J. Chem. Thermodynamics 40, 607–617 (2008)

    Article  Google Scholar 

  30. D.R. Caudwell, J.P.M. Trusler, V. Vesovic, W.A. Wakeham, J. Chem. Eng. Data 54, 359–366 (2009)

    Article  Google Scholar 

  31. K. Liu, Y. Wu, M.A. McHugh, H. Baled, R.M. Enick, B.D. Morreale, J. Supercrit. Fluids 55, 701–711 (2010)

    Article  Google Scholar 

  32. M. Ramos-Estrada, G.A. Iglesias-Silva, K.R. Hall, F. Castillo-Borja, J. Chem. Eng. Data 56, 4461–4465 (2011)

    Article  Google Scholar 

  33. E. Cisneros-Perez, C.M. Reza-San German, M.E. Manriquez-Ramirez, A. Zuniga-Moreno, J. Solut. Chem. 41, 1054–1066 (2012)

    Article  Google Scholar 

  34. A.A. Abdussalam, G.R. Ivanis, I.R. Radovic, M.L. Kijevcanin, J. Chem. Thermodyn. 100, 89–99 (2016)

    Article  Google Scholar 

  35. R. Garcia-Morales, O. Elizalde-Solis, A. Zuniga-Moreno, C. Bouchot, F.I. Gomez-Ramos, M.G. Arenas-Quevedo, Fuel 209, 299–308 (2017)

    Article  Google Scholar 

  36. A. Pimentel-Rodas, L.A. Galicia-Luna, J.J. Castro-Arellano, J. Chem. Eng. Data 62, 3946–3957 (2017)

    Article  Google Scholar 

  37. K. Moodley, S. Adam, P. Naidoo, S. Naidu, D. Ramjugernath, J. Chem. Eng. Data 63, 4136–4156 (2018)

    Article  Google Scholar 

  38. A. Estrada-Baltazar, J.S. Lopez-Lazaro, G.A. Iglesias-Silva, J. Barajas-Fernandez, J. Chem. Thermodyn. 150, 106225 (2020)

    Article  Google Scholar 

  39. M. Hussain, K. Moodley, J. Chem. Eng. Data 65, 1636–1654 (2020)

    Article  Google Scholar 

  40. D. Li, Y. Pang, J. Wang, D. Sun, X. Zhang, D. Yue, L. Hao, J. Solut. Chem. 51, 752–767 (2022)

    Article  Google Scholar 

  41. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  Google Scholar 

  42. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology (2018).

  43. J.S. Brennan, R.J. Hill, F.L. Swinton, J. Chem. Thermodyn. 10, 169–175 (1978)

    Article  Google Scholar 

  44. W.L. Spiteri, T.M. Letcher, J. Chem. Thermodyn. 11, 667–670 (1979)

    Article  Google Scholar 

  45. A.M. Faneite, S.I. Garces, J.A. Aular, M.R. Urdaneta, D. Soto, Fluid Phase Equilib. 334, 117–127 (2012)

    Article  Google Scholar 

  46. X.P. Wang, X.J. Wang, B. Song, J. Chem. Eng. Data 60, 1664–1673 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52276165).

Author information

Authors and Affiliations

Authors

Contributions

YM contributed to measuring the densities, writing draft version. YJ contributed to the correlation of the Tait equation and analysis. XW contributed to reviewing and editing the whole manuscript.

Corresponding author

Correspondence to Xiaopo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yu, J. & Wang, X. High-Pressure Densities and Derived Thermodynamic Properties of Cyclopentane/n-Octane Mixtures from 293.15 K to 363.15 K. Int J Thermophys 44, 37 (2023). https://doi.org/10.1007/s10765-022-03153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03153-3

Keywords

Navigation