Skip to main content
Log in

Determination of Refractive Index and Birefringence of Nanoparticle-Doped Liquid Crystals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The purpose of this article is to investigate the effect of adding nanoparticles on the birefringence of nanoparticle-doped liquid crystals. The approach of this study is based on an analysis of liquid crystals doped with two different types of nanoparticles, viz Fe2O3 and ZnO. The wavelength and temperature-dependent behaviour of the nanoparticle-doped liquid crystal solution were investigated to obtain ordinary, extraordinary and average refractive indices. The paper also presents a comparative study of the indices of refraction, birefringence, order parameter and molecular polarizabilities of the samples obtained experimentally and using the theoretical model. The results indicate that the properties of the sample doped with nanoparticles show an improvement in the birefringence and polarizability ratio value with varying temperatures. The values of Cauchy’s constants, material constant, thermal variation of birefringence, order parameter and constants involved in the thermal variation of average refractive index are computed for later application and use. Samples of liquid crystals doped with Fe2O3 nanoparticles showed a higher increase in birefringence than samples doped with ZnO at all temperatures, suggesting strong molecular interactions and greater applicability. The observed result may be attributed to the stabilization of liquid crystal matrix due to the presence of nanoparticles in the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The supporting data and material are available with the authors and can be shared on request.

References

  1. P.J. Collings, J.S. Patel, Handbook of Liquid Crystal Research (Oxford University Press, New York, 1997)

    Google Scholar 

  2. P.P. Crooker, Blue phases, in Chirality in Liquid Crystals. ed. by H.S. Kitzerow, C. Bahr (Springer, New York, 2021), pp.186–222

    Google Scholar 

  3. A.Y.-G. Fu, J.-H. Li, K.-T. Cheng, Appl. Phys. B (2010). https://doi.org/10.1007/s00340-010-4052-4

    Article  Google Scholar 

  4. X. Li et al., Opt. Commun. (2013). https://doi.org/10.1016/j.optcom.2012.09.001

    Article  Google Scholar 

  5. J. Sivasria et al., Liq. Cryst. 47, 330 (2019). https://doi.org/10.1080/02678292.2019.1647571

    Article  Google Scholar 

  6. F.P. Pandey et al., Liq. Cryst. 47, 1025 (2020). https://doi.org/10.1080/02678292.2019.1701111

    Article  Google Scholar 

  7. P.K. Tripathi et al., Opt. Mater. 135, 113298 (2022). https://doi.org/10.1016/j.optmat.2022.113298

    Article  Google Scholar 

  8. C. Tschiersle, Chem. Soc. Rev. (2007). https://doi.org/10.1039/B615517K

    Article  Google Scholar 

  9. J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys. (2012). https://doi.org/10.1016/j.cap.2012.03.019

    Article  Google Scholar 

  10. E. Solati, D. Dorranian, Appl. Phys. B (2016). https://doi.org/10.1007/s00340-016-6346-7

    Article  Google Scholar 

  11. P.K. Tripathi et al., J. Mol. Struct. (2013). https://doi.org/10.1016/j.molstruc.2012.10.052

    Article  Google Scholar 

  12. N. Pushpavathi, K.L. Sandhya, R. Pratibha, Liq. Cryst. (2018). https://doi.org/10.1080/02678292.2018.1517421

    Article  Google Scholar 

  13. B.K. Pandey et al., Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2013.11.009

    Article  Google Scholar 

  14. W. Zhang et al., Liq. Cryst. (2018). https://doi.org/10.1080/02678292.2017.1411538

    Article  Google Scholar 

  15. O. Aksimentyeva et al., Mol. Cryst. Liq. Cryst. 589, 83 (2014). https://doi.org/10.1080/15421406.2013.872354

    Article  Google Scholar 

  16. P. Jayaprada et al., Mol. Cryst. Liq. Cryst. (2019). https://doi.org/10.1080/15421406.2019.1670942

    Article  Google Scholar 

  17. D. Węgłowska, RSC Adv. (2016). https://doi.org/10.1039/C5RA15291G

    Article  Google Scholar 

  18. S.T. Wu, Phys. Rev. A (1986). https://doi.org/10.1103/PhysRevA.33.1270

    Article  Google Scholar 

  19. G. Yadav et al., Mol. Cryst. Liq. Cryst. (2019). https://doi.org/10.1080/15421406.2019.1629147

    Article  Google Scholar 

  20. J. Li, S.-T. Wu, J. Appl. Phys. (2004). https://doi.org/10.1063/1.1738526

    Article  Google Scholar 

  21. K. Thingujam et al., Acta Phys. Polonica Ser. A (2012). https://doi.org/10.12693/APhysPolA.122.754

    Article  Google Scholar 

  22. M.S. Zakerhamidi et al., J. Mol. Liq. (2010). https://doi.org/10.1016/j.molliq.2010.08.015

    Article  Google Scholar 

  23. W. Kuczyński et al., J. Mol. Cryst. Liq. Cryst. 381, 1–19 (2002). https://doi.org/10.1080/713738745

    Article  Google Scholar 

  24. I. Teucher, K. Ko, M.M. Labes, J. Chem. Phys. 56, 3308 (1972). https://doi.org/10.1063/1.1677695

    Article  ADS  Google Scholar 

  25. A. Kanwar, J. Opt. 42, 311 (2013). https://doi.org/10.1007/s12596-013-0141-1

    Article  Google Scholar 

  26. V. Hecke et al., J. Chem. Educ. (2005). https://doi.org/10.1021/ed082p1349

    Article  Google Scholar 

  27. M. Fröbel, F. Fries et al., Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-27976-z

    Article  Google Scholar 

  28. M. Pande et al., Liq. Cryst. (2015). https://doi.org/10.1080/02678292.2015.1061143

    Article  Google Scholar 

  29. B. Kumar et al., Nanomaterials 10, 842 (2020). https://doi.org/10.3390/nano10050842

    Article  Google Scholar 

  30. A. Nesrullajev, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.112770

    Article  Google Scholar 

  31. G. Pathak et al., J. Theor. Appl. Phys. (2020). https://doi.org/10.1007/s40094-020-00402-4

    Article  Google Scholar 

  32. G. Pathak et al., J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2017.06.021

    Article  Google Scholar 

  33. M. Munavar Hussain et al., Nanosyst. Phys. Chem. Math. 10(3), 243–254 (2019). https://doi.org/10.17586/2220-8054-2019-10-3-243-254

    Article  Google Scholar 

  34. S. Kobayashi et al., Mol. Cryst. Liq. Cryst. 594(1), 21–30 (2014)

    Article  Google Scholar 

  35. Khushboo et al., J. Mol. Liq. 214, 145–148 (2016). https://doi.org/10.1016/j.molliq.2015.11.025

    Article  Google Scholar 

  36. N.H. Ayachit, S.T. Vasan, F.M. Sannaningannavar, D.K. Deshpande, J. Mol. Liq. 133, 134–138 (2007). https://doi.org/10.1016/j.molliq.2006.08.057

    Article  Google Scholar 

  37. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, Appl. Phys. Lett. 82, 1917–1919 (2003)

    Article  ADS  Google Scholar 

  38. Z. Wang et al., Appl. Phys. B (2013). https://doi.org/10.1007/s00340-013-5628-6

    Article  Google Scholar 

  39. T.S. Lin, C.P. Pang, J.T. Lue, Appl. Phys. B (2002). https://doi.org/10.1007/s003400200824

    Article  Google Scholar 

  40. N. Tomašovičová, M. Timko, V. Závišová et al., Int. J. Thermophys. 35, 2044–2053 (2014). https://doi.org/10.1007/s10765-014-1622-4

    Article  ADS  Google Scholar 

  41. P. Kopčanský, N. Tomašovičová, M. Koneracká et al., Int. J. Thermophys. 32, 807–817 (2011). https://doi.org/10.1007/s10765-010-0781-1

    Article  ADS  Google Scholar 

  42. M. Kaczmarek, O. Buchnev, I. Nandhakumar, Appl. Phys. Lett. 92, 103307 (2008). https://doi.org/10.1063/1.2884186

    Article  ADS  Google Scholar 

  43. P. Zainith, N.K. Mishra, Int. J. Thermophys. 42, 137 (2021). https://doi.org/10.1007/s10765-021-02890-1

    Article  ADS  Google Scholar 

  44. A. Gudimalla, M. Lavrič, M. Trček et al., Int. J. Thermophys. 41, 51 (2020). https://doi.org/10.1007/s10765-020-02631-w

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive any financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Anita Kanwar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, A., Ghodke, S. & Gajghate, V. Determination of Refractive Index and Birefringence of Nanoparticle-Doped Liquid Crystals. Int J Thermophys 44, 35 (2023). https://doi.org/10.1007/s10765-022-03145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03145-3

Keywords

Navigation