Skip to main content

Advertisement

Log in

Thermophysical Properties of Ionic Semiclathrate Hydrate Formed with Tetrabutylphosphonium Malonate

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Ionic semiclathrate hydrate is a crystalline compound mainly composed of water, which can dissociate at ordinary pressure and temperature. Ionic semiclathrate hydrates have been widely studied to develop prospective green and safety phase change materials utilized in a thermal energy storage system to cool batteries, in air conditioning, and in a cold chain system. The thermophysical properties, such as equilibrium temperature and dissociation heat, and the mass fraction dependence of such properties need to be carefully investigated to design such systems. In this study, the equilibrium temperature and the dissociation heat of tetrabutylphosphonium malonate ionic semiclathrate hydrates were experimentally determined at various mass fractions through an established method: the maximum value of the dissociation heat was 179.70 kJ·kg−1 at w = 0.357 and the equilibrium temperature was 8.9 °C at w = 0.357. By comparing tetrabutylphosphonium malonate ionic semiclathrate hydrates with other media in terms of the measured equilibrium temperature and the dissociation heat, the usability of the hydrates as thermal energy storage media for general air conditioning was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Kinga, P. Krzysztof, Prog. Mater. Sci. 65, 67–123 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.005

    Article  Google Scholar 

  2. S. Jegadheeswaran, A. Sundaramahalingam, S.D. Pohekar, Int. J. Thermophys. 42, 171 (2021). https://doi.org/10.1007/s10765-021-02921-x

    Article  ADS  Google Scholar 

  3. L. Patricia, S.P.T. Chandra, L. Jan, C. George, G. Christ, T. Jan, Int. J. Thermophys. 32, 913–924 (2011). https://doi.org/10.1007/s10765-011-0984-0

    Article  Google Scholar 

  4. ASHRAE TC 9.9 2011, Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance. (American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., 2011), https://www.ashrae.org/. Accessed 18 Oct 2022

  5. K. Hayashi, S. Takao, H. Ogoshi, S. Matsumoto, in Workshop of Annex 10 ECES, International Energy Agency (2000)

  6. J. Shimada, M. Yamada, A. Tani, T. Sugahara, K. Tsunashima, Y. Tsuchida, T. Hirata, J. Chem. Eng. Data 67, 67–73 (2022). https://doi.org/10.1021/acs.jced.1c00741

    Article  Google Scholar 

  7. T. Iwai, I. Ohta, K. Hiraga, K. Kashima, A. Hotta, R. Ohmura, Fluid Phase Equilib. 562, 113561 (2022). https://doi.org/10.1016/j.fluid.2022.113561

    Article  Google Scholar 

  8. T. Suginaka, H. Sakamoto, K. Iino, S. Takeya, M. Nakajima, R. Ohmura, Fluid Phase Equilib. 317, 25–28 (2012). https://doi.org/10.1016/j.fluid.2011.12.010

    Article  Google Scholar 

  9. T. Miyamoto, R. Koyama, N. Kurokawa, A. Hotta, S. Alavi, R. Ohmura, Front. Chem. 8, 547 (2020). https://doi.org/10.3389/fchem.2020.00547

    Article  ADS  Google Scholar 

  10. T. Iwai, T. Miyamoto, N. Kurokawa, A. Hotta, R. Ohmura, J. Energy Storage 52(Part A), 104801 (2022). https://doi.org/10.1016/j.est.2022.104801

    Article  Google Scholar 

  11. K. Sato, H. Tokutomi, R. Ohmura, Fluid Phase Equilib. 337, 115–118 (2013). https://doi.org/10.1016/j.fluid.2012.09.016

    Article  Google Scholar 

  12. Y. Arai, Y. Yamauchi, H. Tokutomi, F. Endo, A. Hotta, A. Saman, R. Ohmura, Int. J. Refrig. 88, 102–107 (2018). https://doi.org/10.1016/j.ijrefrig.2017.12.020

    Article  Google Scholar 

  13. Y. Arai, R. Koyama, F. Endo, A. Hotta, R. Ohmura, J. Chem. Thermodyn. 131, 330–335 (2019). https://doi.org/10.1016/j.jct.2018.11.017

    Article  Google Scholar 

  14. R. Koyama, A. Hotta, R. Ohmura, J. Chem. Thermodyn. 144, 106088 (2020). https://doi.org/10.1016/j.jct.2020.106088

    Article  Google Scholar 

  15. Y. Yamauchi, T. Yamasaki, F. Endo, A. Hotta, R. Ohmura, Chem. Eng. Technol. 40, 1810–1816 (2017). https://doi.org/10.1002/ceat.201600459

    Article  Google Scholar 

  16. T. Miyamoto, N. Kurokawa, I. Ota, A. Hotta, R. Ohmura, J. Energy Storage 45, 103773 (2022). https://doi.org/10.1016/j.est.2021.103773

    Article  Google Scholar 

  17. H. Sakamoto, K. Sato, K. Shiraiwa, S. Takeya, M. Nakajima, R. Ohmura, RSC Adv. 1, 315–322 (2011). https://doi.org/10.1039/C1RA00108F

    Article  ADS  Google Scholar 

  18. Y.A. Dyadin, K.A. Udachin, J. Incl. Phenom. 2, 61–72 (1984). https://doi.org/10.1007/BF00663240

    Article  Google Scholar 

  19. G.A. Jefferey, Acc. Chem. Res. 2, 344–352 (1969). https://doi.org/10.1021/ar50023a004

    Article  Google Scholar 

  20. H. Nakayama, K. Watanabe, Bull. Chem. Soc. Jpn. 51, 2518–2522 (1978). https://doi.org/10.1246/bcsj.51.2518

    Article  Google Scholar 

  21. S. Muromachi, S. Taketa, Y. Yamamoto, R. Ohmura, CrystEngComm 16, 2056 (2014). https://doi.org/10.1039/c3ce41942h

    Article  Google Scholar 

  22. L.G. Alan, D.S. Raymond, Ind. Eng. Chem. Fundam. 23, 420–425 (1984). https://doi.org/10.1021/i100016a005

    Article  Google Scholar 

  23. R. Koyama, Y. Arai, Y. Yamauchi, S. Takeya, F. Endo, A. Hotta, R. Ohmura, J. Power Sources 427, 70–76 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.055

    Article  ADS  Google Scholar 

  24. M. Maruyama, R. Matsuura, R. Ohmura, Sci. Rep. 11, 11315 (2021). https://doi.org/10.1038/s41598-021-90802-6

    Article  ADS  Google Scholar 

  25. M. Maruyama, R. Ohmura, Can. J. Chem. Eng. (2022). https://doi.org/10.1002/cjce.24493

    Article  Google Scholar 

  26. H. Oyama, W. Shimada, T. Ebinuma, Y. Kamata, S. Takeya, T. Uchida, J. Nagao, H. Narita, Fluid Phase Equilib. 234, 131–135 (2005). https://doi.org/10.1016/j.fluid.2005.06.005

    Article  Google Scholar 

  27. J. Shimada, M. Shimada, T. Sugahara, K. Tsunashima, A. Tani, Y. Tsuchida, M. Matsumiya, J. Chem. Eng. Data 63, 3615–3620 (2018). https://doi.org/10.1021/acs.jced.1c00741

    Article  Google Scholar 

  28. A.A. Al-Abidi, S. Bin Mat, K. Sopian, M.Y. Sulaiman, C.H. Lim, A. Th, Renew. Sustain. Energy Rev. 16, 5802–5819 (2012). https://doi.org/10.1016/j.rser.2012.05.030

    Article  Google Scholar 

  29. R. Feistel, W. Wagner, J. Phys. Chem. Ref. Data 35, 1021–1047 (2006). https://doi.org/10.1063/1.2183324

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This study was supported by a Keirin-racing-based research-promotion fund from the JKA Foundation (2022M-270).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TI, RO; Methodology: TI, SO, IO, KH; Formal analysis and investigation: TI, SO, IO, KH, RO; Writing—original draft preparation: TI, SO; Writing—review and editing: AH, RO; Funding acquisition: RO; Resources: AH, RO; Supervision: RO.

Corresponding author

Correspondence to Ryo Ohmura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, T., Oguro, S., Ota, I. et al. Thermophysical Properties of Ionic Semiclathrate Hydrate Formed with Tetrabutylphosphonium Malonate. Int J Thermophys 44, 28 (2023). https://doi.org/10.1007/s10765-022-03139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03139-1

Keywords

Navigation