Skip to main content
Log in

On the Thermal Characterization of Insulating Solids Using Laser-Spot Thermography in a Front Detection Configuration

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The application of the laser-spot active lock-in infrared thermography technique for the simultaneous measurement of the thermal diffusivity and conductivity of thermal insulators is an advantageous method that takes advantage of the heat losses by conduction from the sample to the surrounding air to recover the thermal conductivity in addition to the thermal diffusivity, which is the parameter usually determined using this technique. Here we introduce results obtained using a front detection configuration. We foresee it as a complementary modality for that presented using a rear detection configuration. In the current method, the measurement time is reduced at least one order of magnitude using modulation frequencies of tenths of Hz instead of the smaller frequencies commonly used in the rear configuration. The method allows us the work with thicker samples and lower excitation powers. One noticeable distinction in the current report, as seen from numerical calculations and experimental measurements, is that we unveil the presence of maxima and minima in the amplitude profiles at distances from the heating point that are closely related to the thermal wave wavelength. This interesting behavior reminds us of the well-known highly damped character of thermal waves and the standing wave conditions like those that have been used commonly to explain other photothermal phenomena. Finally, we will comment on the usefulness of the method to characterize anisotropic samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.P. Almond, P.M. Patel, Photothermal Science and Techniques, 1st edn. (Springer, Dordrecht, 1996)

    Google Scholar 

  2. M.J. Assael, K.D. Antoniadis, W.H. Wakeham, Int. J. Thermophys. 31, 1051 (2010). https://doi.org/10.1007/s10765-010-0814-9

    Article  ADS  Google Scholar 

  3. M. Khayet, J.M. Ortiz de Zárate, Int. J. Thermophys. 26, 637 (2005). https://doi.org/10.1007/s10765-005-5568-4

    Article  ADS  Google Scholar 

  4. Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Int. J. Heat Mass Transf. 151, 119331 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331

    Article  Google Scholar 

  5. M. Rottmann, T. Beikircher, H.P. Ebert, Int. J. Therm. Sci. 152, 106338 (2020). https://doi.org/10.1016/j.ijthermalsci.2020.106338

    Article  Google Scholar 

  6. Z. Yinping, J. Yi, J. Yi, Meas. Sci. Technol. 10, 201 (1999). https://doi.org/10.1088/0957-0233/10/3/015

    Article  ADS  Google Scholar 

  7. A.M. Mansanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 42, 4477 (1990). https://doi.org/10.1103/PhysRevB.42.4477

    Article  ADS  Google Scholar 

  8. S.O. Ferreira, C. Ying An, I.N. Bandeira, L.C.M. Miranda, Phys. Rev. B 39, 7967 (1989). https://doi.org/10.1103/PhysRevB.39.7967

    Article  ADS  Google Scholar 

  9. L.F. Perondi, L.C.M. Miranda, J. Appl. Phys. 62, 2955 (1987). https://doi.org/10.1063/1.339380

    Article  ADS  Google Scholar 

  10. K. Strzałkowski, D. Dadarlat, M. Streza, F. Firszt, Thermochim. Acta 614, 232 (2015). https://doi.org/10.1016/j.tca.2015.06.027

    Article  Google Scholar 

  11. D. Dadarlat, C. Neamtu, Acta Chim. Slov. 56, 225 (2009)

    Google Scholar 

  12. K. Martínez, E. Marín, C. Glorieux, A. Lara-Bernal, A. Calderón, G. Peña Rodríguez, R. Ivanov, Int. J. Therm. Sci. 98, 202 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.07.019

    Article  Google Scholar 

  13. C. Boué, S. Holé, Infrared Phys. Technol. 55, 376 (2012). https://doi.org/10.1016/j.infrared.2012.02.002

    Article  ADS  Google Scholar 

  14. F. Cernuschi, P.G. Bison, A. Figari, S. Marinetti, E. Grinzato, Int. J. Thermophys. 25, 439 (2004). https://doi.org/10.1023/B:IJOT.0000028480.27206.cb

    Article  ADS  Google Scholar 

  15. M. Colom, A. Bedoya, A. Mendioroz, A. Salazar, Int. J. Therm. Sci. 151, 106277 (2020). https://doi.org/10.1016/j.ijthermalsci.2020.106277

    Article  Google Scholar 

  16. S. Paoloni, M.E. Tata, F. Scudieri, F. Mercuri, M. Marinelli, U. Zammit, Appl. Phys. A 98, 461 (2010). https://doi.org/10.1007/s00339-009-5422-9

    Article  ADS  Google Scholar 

  17. T. Ishizaki, H. Nagano, Infrared Phys. Technol. 99, 248 (2019). https://doi.org/10.1016/j.infrared.2019.04.023

    Article  ADS  Google Scholar 

  18. M. Larciprete, N. Orazi, Y.-S. Gloy, S. Paoloni, C. Sibilia, R. LiVoti, Sensors 22, 940 (2022). https://doi.org/10.3390/s22030940

    Article  ADS  Google Scholar 

  19. L. Fabbri, P. Fenici, Rev. Sci. Instrum. 66, 3593 (1995). https://doi.org/10.1063/1.1146443

    Article  ADS  Google Scholar 

  20. A. Mendioroz, R. Fuente-Dacal, E. Apiñaniz, A. Salazar, Rev. Sci. Instrum. 80, 074904 (2009). https://doi.org/10.1063/1.3176467

    Article  ADS  Google Scholar 

  21. A. Cifuentes, A. Mendioroz, A. Salazar, Int. J. Therm. Sci. 121, 305 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.07.023

    Article  Google Scholar 

  22. X.P.V. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, New York, 2001), p.101

    Google Scholar 

  23. A. Salazar, A. Mendioroz, R. Fuente, Appl. Phys. Lett. 95, 121905 (2009). https://doi.org/10.1063/1.3236782

    Article  ADS  Google Scholar 

  24. R. Fuente, PhD Thesis, UPV/EHU Bilbao Spain (2012). https://www.ehu.eus/photothermal/Tesis_Raquel_Fuente. Accessed 5 Sep 2022

  25. E. Marín, Lat. Am. J. Phys. Educ. 3, 243 (2009)

    ADS  Google Scholar 

  26. Goodfellow Catalogue at http://www.goodfellow.com. Accessed 1 Sep 2022

  27. N.J. Kotlarewski, B. Ozarska, B.K. Gusamo, BioResources 9, 5784 (2014)

    Article  Google Scholar 

  28. The Engineering Toolbox at https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html. Accessed 15 Aug 2022

  29. A. Bedoya, J. González, J. Rodríguez-Aseguinolaza, A. Mendioroz, A. Sommier, J.C. Batsale, C. Pradere, A. Salazar, Measurement 134, 519 (2019). https://doi.org/10.1016/j.measurement.2018.11.013

    Article  ADS  Google Scholar 

  30. M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer Fundamentals and Applications (Taylor & Francis, New York, 2000), p.53

    Google Scholar 

  31. Z. Li, L. Gong, C. Li, Y. Pan, Y. Huang, X. Cheng, J. Non-Cryst. Solids 454, 1 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.10.015

    Article  ADS  Google Scholar 

  32. Y. Xie, S. Xu, Z. Xu, H. Wu, C. Deng, X. Wang, Carbon 98, 381 (2016). https://doi.org/10.1016/j.carbon.2015.11.033

    Article  Google Scholar 

  33. L.R. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolasu, Thermal Diffusivity (IFI/Plenum, New York, 1973)

    Book  Google Scholar 

  34. M.J. Assael, S. Botsios, K. Gialou, I.N. Metaxa, Int. J. Thermophys. 26, 1595 (2005). https://doi.org/10.1007/s10765-005-8106-5

    Article  ADS  Google Scholar 

  35. MakeItFrom.com at https://www.makeitfrom.com/material-properties/Medium-Density-Fiberboard-MDF. Accessed 16 Aug 2022

  36. J. Tippner, E. Troppová, R. Hrčka, P. Halachan, R. Lagaňa, V. Sebera, M. Trcala, Proceedings of the 57th International Convention of Society of Wood Science and Technology, 2014, Zvolen, Slovakia, p. 878 (2014)

  37. E. Troppová, J. Tippner, R. Hrcka, Heat Mass Transf. 53, 115 (2016). https://doi.org/10.1007/s00231-016-1793-6

    Article  ADS  Google Scholar 

  38. J. Zhou, H. Zhou, C. Hu, S. Hu, BioSources 8, 4185 (2013)

    Google Scholar 

  39. MakeItFrom.com at https://www.makeitfrom.com/material-properties/Balsa. Accessed 16 Aug 2022

  40. M. Larciprete, N. Orazi, Y.S. Gloy, S. Paoloni, C. Sibilia, R. Li Voti, Sensors 22, 940 (2022). https://doi.org/10.3390/s22030940

    Article  ADS  Google Scholar 

  41. Y. Jannot, A. Degiovanni, A. Aubert, F. Lechleiter, Rev. Sci. Instrum. 89, 104905 (2018). https://doi.org/10.1063/1.5038401

    Article  ADS  Google Scholar 

  42. J. Stewart, Calculus: Early Transcendentals, 6th edn. (Cengage Learning, Boston, 2007)

    Google Scholar 

  43. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995). https://doi.org/10.1063/1.1146123

    Article  ADS  Google Scholar 

  44. J.A.P. Lima, E. Marín, M.G. da Silva, M.S. Sthel, S.L. Cardoso, D.F. Takeuti, C. Gatts, H. Vargas, Rev. Sci. Instrum. 71, 2928 (2000). https://doi.org/10.1063/1.1150712

    Article  ADS  Google Scholar 

  45. E. Marín, G. Vera-Medina, A. García, A. Calderón, Cent. Eur. J. Phys. 8, 634 (2009). https://doi.org/10.2478/s11534-009-0121-x

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of CONACyT (Mexico), of COFAA-IPN by the SIBE and BEIFI Programs, and SIP-IPN by EDI are acknowledged. A. Bedoya and C. Garcia-Segundo gratefully acknowledge the financial support through the Programa de becas posdoctorales 2020–2021 at UNAM-DGAPA and PAPIIT (IG100821).

Funding

This work was partially supported by Research Grants from SIP-IPN (20220575 and 20221095) and by CONACyT Scholarship Program and Grant No. 205640 and PAPIIT Grant No. IG100821.

Author information

Authors and Affiliations

Authors

Contributions

AB: Methodology, Software, Validation, Formal analysis, Investigation, Visualization, Writing—review and editing. JJ: Software, Formal analysis. CG-S: Supervision, Funding acquisition, Project administration, Formal analysis, Writing—review and editing. EM: Funding acquisition, Project administration, Resources, Supervision, Conceptualization, Methodology, Validation, Formal analysis, Writing—original draft.

Corresponding author

Correspondence to Ernesto Marín.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedoya, A., Marín, E., Puldón, J.J. et al. On the Thermal Characterization of Insulating Solids Using Laser-Spot Thermography in a Front Detection Configuration. Int J Thermophys 44, 27 (2023). https://doi.org/10.1007/s10765-022-03138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03138-2

Keywords

Navigation