Skip to main content

Advertisement

Log in

Molecular-Specific Imaging of Tissue with Photo-Thermal Optical Coherence Tomography

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Photo-thermal optical coherence tomography (PT-OCT) is a functional extension of conventional OCT with the ability to generate maps of light absorption co-registered with the micron resolution structural tomograms of OCT. Potentially, signal analysis of such light absorption maps can be used to obtain refined depth-resolved insight into the chemical composition of tissue. Such analysis, however, is complex because the underlying physics of PT-OCT is multifactorial. That is, aside from tissue chemical composition, optical, thermal, and mechanical properties of tissue affect PT-OCT signals; certain system/instrumentation parameters also influence PT-OCT signals. As such, obtaining refined depth-resolved insight into tissue chemical composition requires in-depth understanding of the interplay between sample and system parameters and the induced signals. Moreover, translation of PT-OCT to clinics requires introduction of new experimentation strategies for enhancing the detection specificity and imaging speed of PT-OCT. In this review paper, we present and discuss our recent works aimed at addressing the above theoretical and technological challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.G. Fujimoto, W. Drexler, Introduction to OCT, in Optical Coherence Tomography: Technology and Applications, pp. 3–64, (2015)

  2. J. Fujimoto, D. Huang, Foreword: 25 years of optical coherence tomography. Investig. Ophthalmol. Visual Sci. 57, OCTi-OCTii (2016)

    Article  Google Scholar 

  3. S. Marschall, B. Sander, M. Mogensen, T.M. Jørgensen, P.E. Andersen, Optical coherence tomography—current technology and applications in clinical and biomedical research. Anal. Bioanal. Chem. 400, 2699–2720 (2011)

    Article  Google Scholar 

  4. G.J. Tearney, E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H.G. Bezerra et al., Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012)

    Article  Google Scholar 

  5. V. Nagaraja, A. Kalra, R. Puri, When to use intravascular ultrasound or optical coherence tomography during percutaneous coronary intervention? Cardiovasc. Diag. Therapy 10, 1429 (2020)

    Article  Google Scholar 

  6. E.B. Shokouhi, M. Razani, A. Gupta, N. Tabatabaei, Comparative study on the detection of early dental caries using thermo-photonic lock-in imaging and optical coherence tomography. Biomed. Opt. Express 9, 3983–3997 (2018)

    Article  Google Scholar 

  7. J.E. Phipps, T. Hoyt, D. Vela, T. Wang, J.E. Michalek, L.M. Buja et al., Diagnosis of thin-capped fibroatheromas in intravascular optical coherence tomography images. Circulation 9, e003163 (2016)

    Google Scholar 

  8. H. Stary, Composition and classification of human atherosclerotic lesions. Virchows Archiv A 421, 277–290 (1992)

    Article  Google Scholar 

  9. D.C. Adler, S.-W. Huang, R. Huber, J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt. Express 16, 4376–4393 (2008)

    Article  ADS  Google Scholar 

  10. C. Zhou, T.-H. Tsai, D.C. Adler, H.-C. Lee, D.W. Cohen, A. Mondelblatt et al., Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells. Opt. Lett. 35, 700–702 (2010)

    Article  ADS  Google Scholar 

  11. A.S. Paranjape, R. Kuranov, S. Baranov, L.L. Ma, J.W. Villard, T. Wang et al., Depth resolved photothermal OCT detection of macrophages in tissue using nanorose. Biomed. Opt. Express 1, 2–16 (2010)

    Article  Google Scholar 

  12. J. Tucker-Schwartz, T. Meyer, C. Patil, C. Duvall, M. Skala, In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express 3, 2881–2895 (2012)

    Article  Google Scholar 

  13. M.C. Skala, M.J. Crow, A. Wax, J.A. Izatt, Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett. 8, 3461–3467 (2008)

    Article  ADS  Google Scholar 

  14. M. Lapierre-Landry, A.Y. Gordon, J.S. Penn, M.C. Skala, In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Sci. Rep. 7, 1–9 (2017)

    Article  Google Scholar 

  15. R.V. Kuranov, J. Qiu, A.B. McElroy, A. Estrada, A. Salvaggio, J. Kiel et al., Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography. Biomed. Opt. Express 2, 491–504 (2011)

    Article  Google Scholar 

  16. M. Lapierre-Landry, A.L. Huckenpahler, B.A. Link, R.F. Collery, J. Carroll, M.C. Skala, Imaging melanin distribution in the zebrafish retina using photothermal optical coherence tomography. Transl. Vision Sci. Technol. 7, 4–4 (2018)

    Article  Google Scholar 

  17. B. Yin, R.V. Kuranov, A.B. McElroy, S.S. Kazmi, A.K. Dunn, T.Q. Duong et al., Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation. J. Biomed. Opt. 18, 056005 (2013)

    Article  ADS  Google Scholar 

  18. R.V. Kuranov, S. Kazmi, A.B. McElroy, J.W. Kiel, A.K. Dunn, T.E. Milner et al., In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT. Opt. Express 19, 23831–23844 (2011)

    Article  ADS  Google Scholar 

  19. M. Lapierre-Landry, T.B. Connor, J. Carroll, Y.K. Tao, M.C. Skala, Photothermal optical coherence tomography of indocyanine green in ex vivo eyes. Opt. Lett. 43, 2470–2473 (2018)

    Article  ADS  Google Scholar 

  20. M.E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, Amsterdam, 2006)

    Book  Google Scholar 

  21. G. Guan, R. Reif, R.K. Wang, Z. Huang, Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography. J. Biomed. Opt. 16, 126003 (2011)

    Article  ADS  Google Scholar 

  22. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30, 1162–1164 (2005)

    Article  ADS  Google Scholar 

  23. M. Lapierre-Landry, J.M. Tucker-Schwartz, M.C. Skala, Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography. Biomed. Opt. Express 7, 2607–2622 (2016)

    Article  Google Scholar 

  24. M.H. Salimi, M. Villiger, N. Tabatabaei, Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries. Biomed. Opt. Express 13, 3416–3433 (2022)

    Article  Google Scholar 

  25. T. De Bruin, C.B. Brouwer, M. van Linde-Sibenius Trip, H. Jansen, D.W. Erkelens, Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. Am J Clin. Nutr 58, 477–483 (1993)

    Article  Google Scholar 

  26. U.G. Indahl, N.S. Sahni, B. Kirkhus, T. Næs, Multivariate strategies for classification based on NIR-spectra—with application to mayonnaise. Chemom. Intell. Lab. Syst. 49, 19–31 (1999)

    Article  Google Scholar 

  27. E. Stachowska, B. Dołęgowska, D. Chlubek, T. Wesołowska, K. Ciechanowski, P. Gutowski et al., Dietary trans fatty acids and composition of human atheromatous plaques. Eur. J. Nutr. 43, 313–318 (2004)

    Article  Google Scholar 

  28. J.-H. Han, X. Liu, J.U. Kang, C.G. Song, High-resolution subsurface articular cartilage imaging based on Fourier-domain common-path optical coherence tomography. Chin. Opt. Lett. 8, 167–169 (2010)

    Article  Google Scholar 

  29. T.J. Allen, P.C. Beard, A. Hall, A.P. Dhillon, J.S. Owen, Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J. Biomed. Opt. 17, 061209 (2012)

    Article  ADS  Google Scholar 

  30. M. Salimi, M. Villiger, N. Tabatabaei, Effects of lipid composition on photothermal optical coherence tomography signals. J. Biomed. Opt. 25, 120501 (2020)

    Article  ADS  Google Scholar 

  31. M. Salimi, M. Villiger, N. Tabatabaei, New model for understanding the relationship between tissue composition and photothermal optical coherence tomography signals, in Label-free Biomedical Imaging and Sensing (LBIS) 2021 (2021, p. 116550Q.

  32. C.P. Fleming, J. Eckert, E.F. Halpern, J.A. Gardecki, G.J. Tearney, Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed. Opt. Express 4, 1269–1284 (2013)

    Article  Google Scholar 

  33. R.D. Madder, J.L. Smith, S.R. Dixon, J.A. Goldstein, Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circulation 5, 55–61 (2012)

    Google Scholar 

  34. R.D. Madder, J.A. Goldstein, S.P. Madden, R. Puri, K. Wolski, M. Hendricks et al., Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC 6, 838–846 (2013)

    Google Scholar 

  35. K. Jansen, M. Wu, A.F. van der Steen, G. van Soest, Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics 2, 12–20 (2014)

    Article  Google Scholar 

  36. S.S.S. Choi, B. Lashkari, A. Mandelis, J.J. Weyers, A. Boyes, S.F. Foster et al., Interference-free detection of lipid-laden atherosclerotic plaques by 3D co-registration of frequency-domain differential photoacoustic and ultrasound radar imaging. Sci. Rep. 9, 1–11 (2019)

    Google Scholar 

  37. S. Makita, Y. Yasuno, In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents. Biomed. Opt. Express 6, 1707–1725 (2015)

    Article  Google Scholar 

  38. H. Salimi, M. Villiger, N. Tabatabaei, Transient-mode photothermal optical coherence tomography. Opt. Express 1, 2 (2021)

    Google Scholar 

  39. M.H. Salimi, M. Villiger, N. Tabatabaei, Detection of lipid at video rate with spectroscopic transient-mode photo-thermal optical coherence tomography (TM-PT-OCT), in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI, 2022, pp. 54–59.

  40. J.M. Tucker-Schwartz, M. Lapierre-Landry, C.A. Patil, M.C. Skala, Photothermal optical lock-in optical coherence tomography for in vivo imaging. Biomed Opt Express 6, 2268–2282 (2015)

    Article  Google Scholar 

  41. J.M. Tucker-Schwartz, M. Lapierre-Landry, C.A. Patil, M.C. Skala, Photothermal optical lock-in optical coherence tomography for in vivo imaging. Biomed. Opt. Express 6, 2268–2282 (2015)

    Article  Google Scholar 

  42. C. Pache, N.L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley et al., Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy. Opt. Express 20, 21385–21399 (2012)

    Article  ADS  Google Scholar 

Download references

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2022–04605); York University (Lassonde School of Engineering Innovation Fund); National Institutes of Health (P41EB015903).

Author information

Authors and Affiliations

Authors

Contributions

M.S. developed the system, carried out the experiments, analyzed the data and drafted the manuscript; M.V. and N.T. supervised all aspects of project including the design and development the system, design of experiments, data analysis and edited the manuscript.

Corresponding author

Correspondence to Nima Tabatabaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, M., Villiger, M. & Tabatabaei, N. Molecular-Specific Imaging of Tissue with Photo-Thermal Optical Coherence Tomography. Int J Thermophys 44, 36 (2023). https://doi.org/10.1007/s10765-022-03135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03135-5

Keywords

Navigation