Skip to main content
Log in

New Emissivity Measuring System with High Accuracy Under Controlled Environment Conditions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Accurate knowledge of spectral emissivity is very important in many technological and scientific applications. In this study, a new measuring system, which can realizes spectral directional emissivity measurements under controlled environment conditions, was constructed. The apparatus realizes the high accuracy emissivity measurement through the precision knowledge of the sample surface temperature and the high-precision calibration. The temperature of the sample surface is accurately measured by the suitable method depending on the sample type. Accurately determining the spectral response function and the background radiation are obtained by the modified two-temperature calibration method proposed in this study. The evaluation of the assisted blackbody shows that it has good temperature uniformity and high emissivity, which guarantee the effectiveness of the modified two-temperature calibration method. Spectral emissivity of silicon carbide was measured, and the conformity with literature data around the Christiansen wavelength proves the reliability of the developed apparatus. In addition, the spectral emissivity of copper during the real time oxidation was measured to check the capability of the emissivity measurements under controlled environment. Finally, the uncertainty for silicon carbide at 1073 K is evaluated, and the relative combined standard uncertainty for silicon carbide sample at 1073 K is better than 2.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Availability of data and material is clearly stated in the text.

References

  1. F. Lizama-Tzec, J. Macías, M. Estrella-Gutiérrez, A. Cahue-López, O. Arés, R. De Coss, J. Alvarado-Gil, G. Oskam, J. Mater. Sci.-Mater. Electron. 26, 5553 (2015)

    Article  Google Scholar 

  2. K. Hirano, R. Fabbro, M. Muller, J. Phys. D 44, 435402 (2014)

    Article  Google Scholar 

  3. G.D. Stefanidis, K.M. Van Geem, G.J. Heynderickx, G.B. Marin, Chem. Eng. J. 137, 411 (2008)

    Article  Google Scholar 

  4. G. Shaoa, Y. Lua, D.A.H. Hanaorc, S. Cuia, J. Jiaod, Corros. Sci. 146, 233 (2019)

    Article  Google Scholar 

  5. M. Minissale, C. Pardanaud, R. Bisson, L. Gallais, J. Phys. D 50, 455601 (2017)

    Article  ADS  Google Scholar 

  6. S. Zhao, X. Li, X. Zhou, K. Cheng, X. Huai, Appl. Therm. Eng. 109, 663 (2016)

    Article  Google Scholar 

  7. G. Cao, S.J. Weber, S.O. Martin, T.L. Malaney, S.R. Slattery, M.H. Anderson, K. Sridharan, T.R. Allen, Nucl. Technol. 175, 460 (2011)

    Article  ADS  Google Scholar 

  8. Y. Xu, K. Zhang, Z. Tian, R. Tong, K. Yu, Y. Liu, Infrared Phys. Technol. 126, 104344 (2022)

    Article  Google Scholar 

  9. L.D. Campo, R.B. Pérezsáez, X. Esquisabel, I. Fernández, M.J. Tello, Rev. Sci. Instrum. 77, 113111 (2006)

    Article  ADS  Google Scholar 

  10. K. Nakazawa, A. Ohnishi, Int. J. Thermophys. 31, 2010 (2010)

    Article  ADS  Google Scholar 

  11. P. Honnerová, J. Martan, M. Kučera, M. Honner, J. Hameury, Meas. Sci. Technol. 25, 30 (2014)

    Article  Google Scholar 

  12. M. Yoshida, N. Utsumi, R. Ichiki, J.H. Kong, M. Okumiya, Adv. Mater. Res. 1110, 163 (2015)

    Article  Google Scholar 

  13. C. Monte, B. Gutschwager, S.P. Morozova et al., Int. J. Thermophys. 30, 203 (2009)

    Article  ADS  Google Scholar 

  14. L. Hanssen, B. Wilthan, C. Monte, J. Hollandt, J. Hameury, J.R. Filtz, F. Girard, M. Battuello, J. Ishii, Metrologia 53, 03001 (2016)

    Article  ADS  Google Scholar 

  15. M. Honner, P. Honnerova, Appl. Opt. 54, 669 (2015)

    Article  ADS  Google Scholar 

  16. D. Ren, H. Tan, Y. Xuan, Y. Han, Q. Li, Int. J. Thermophys. 37, 51 (2016)

    Article  ADS  Google Scholar 

  17. O. Rozenbaum, D.D.S. Meneses, Y. Auger, S. Chermanne, P. Echegut, Rev. Sci. Instrum. 70, 4020 (1999)

    Article  ADS  Google Scholar 

  18. J. Manara, M. Arduini-Schuster, M. Keller, Infrared Phys. Technol. 54, 395 (2011)

    Article  ADS  Google Scholar 

  19. J. Lohrengel, R. Todtenhaupt, M. Ragab, Heat. Mass Transf. 28, 321 (1993)

    Google Scholar 

  20. E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, Appl. Opt. 31, 4527 (1992)

    Article  ADS  Google Scholar 

  21. J. Dai, X. Wang, G. Yuan, J. Phys. 13, 63 (2005)

    Google Scholar 

  22. K. Zhang, K. Yu, Y. Liu, Y. Zhao, Int. J. Heat. Mass. Transf. 114, 1037 (2017)

    Article  Google Scholar 

  23. R.B. Pérez-Sáez, L.D. Campo, M.J. Tello, J. Int, Thermophysics 29, 1141 (2008)

    Article  ADS  Google Scholar 

  24. E.T. Kwor, S. Matteï, High. Temp-high. Press 33, 551 (2001)

    Article  Google Scholar 

  25. J. Song, X. Hao, Z. Yuan, Z. Liu, L. Ding, J. Int, Thermophysics 39, 1 (2018)

    Article  ADS  Google Scholar 

  26. F.P. Incropera, A.S. Lavine, T.L. Bergman, D.P. DeWitt, Fundamentals of heat and mass transfer (Wiley, New York, 2007)

    Google Scholar 

  27. C. Monte, J. Hollandt, Metrologia 47, S172 (2010)

    Article  ADS  Google Scholar 

  28. A. Adibekyan, High-accuracy spectral emissivity measurement for industrial and remote sensing applications. (2016)

  29. V.I. Sapritsky, A.V. Prokhorov, Metrologia 29, 9 (1992)

    Article  ADS  Google Scholar 

  30. B. Rousseau, J. Brun, D.D.S. Meneses, P. Echegut, Int. J. Thermophys. 26, 1277 (2005)

    Article  ADS  Google Scholar 

  31. C.P. Cagran, L.M. Hanssen, M. Noorma, A.V. Gura, S.N. Mekhontsev, J. Int, Thermophysics 28, 581 (2007)

    Article  ADS  Google Scholar 

  32. L. Wang, S. Basu, Z. Zhang, J. Heat. Transf. 134, 072701 (2012)

    Article  Google Scholar 

  33. K. Zhang, Y. Liu, Appl. Therm. Eng. 168, 114854 (2020)

    Article  Google Scholar 

  34. D.D.S. Meneses, J.F. Brun, Appl. Spectrosc. 58, 969 (2004)

    Article  ADS  Google Scholar 

  35. K. Yu, H. Zhang, Y. Liu, Y. Liu, Int. J. Heat. Mass Transf. 129, 1066 (2019)

    Article  Google Scholar 

  36. B. Kong, T. Li, Q. Eri, J. Alloy. Compd. 703, 125 (2017)

    Article  Google Scholar 

  37. L.D. Campo, R.B. Pérez-Sáez, L. González-Fernández, X. Esquisabel, I. Fernández, P. González-Martín, M.J. Tello, J. Alloy. Compd. 489, 482 (2010)

    Article  Google Scholar 

  38. L.D. Campo, R.B. Pérez-Sáez, M.J. Tello, Corros. Sci. 50, 194 (2008)

    Article  Google Scholar 

  39. K. Zhang, K. Yu, Y. Liu, Y. Zhao, Mater. Res. Express. 4, 086501 (2017)

    Article  ADS  Google Scholar 

  40. L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement Using the GUM (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. U1804261, 62075058), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 224000510007), Natural Science Foundation of Henan Province (Grant Nos. 222300420011, 222300420209), Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No. 22A140021), Key Scientific and Technological Project of Xinxiang City (Grant No. GG2020002) and Outstanding Youth Foundation of Henan Normal University (Grant No. 20200171).

Author information

Authors and Affiliations

Authors

Contributions

KZ and QH wrote the main manuscript text and KY and YL prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Kaihua Zhang or Kun Yu.

Ethics declarations

Competing interests

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Hu, Q., Yu, K. et al. New Emissivity Measuring System with High Accuracy Under Controlled Environment Conditions. Int J Thermophys 44, 13 (2023). https://doi.org/10.1007/s10765-022-03129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03129-3

Keywords

Navigation