Skip to main content
Log in

Representation of the Characteristic Temperature of Correlative Thermal Conductivity of Opacifier-Fiber Doped Silica Aerogel by Steady-State Method at Large Temperature Differences

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To evaluate the thermal insulation performance of opacifier-fiber silica aerogel at large temperature differences (ΔT > 100 K), this study proposes a characteristic temperature method to represent the thermal conductivity measured by the steady-state method. The theoretical temperature-dependent thermal conductivity model of opacifier-fiber doped silica aerogel is first proposed, including the thermal conductivity model of heat conduction and radiation. Then, the characteristic temperature is conducted based on Fourier’s law and their temperature-dependent thermal conductivity model, and the key parameters are obtained. The results indicate that the correlative thermal conductivity of silica aerogel with 1 % SiC & 0.51 % fiber and 5.84 % SiC & 0.51 % fiber equal 0.03105 to 0.03998 and 0.03181 to 0.03685 W·m−1·K−1, respectively, at ΔT = 136 K to 799 K and Tc = 288 K. Specifically, the characteristic temperature representation method is more efficient and accurate to represent the correlative thermal conductivity measured by the steady-state method at large ΔT than the standard method of (Th + Tc)/2, where the accuracy can be upgraded by 6.88 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Specimen’s cross-section area

cp :

Specific heat, J·kg1·K1

C:

Gas coefficient

C0 :

A factor of the characteristic temperature of λa

C1 :

A factor of the characteristic temperature of λa, W·m−1·K−2

C2 :

A factor of the characteristic temperature of λa, W·m−1·K−3

C3 :

A factor of the characteristic temperature of λa, W·m−1·K−4

C4 :

A factor of the characteristic temperature of λr, W·m−1·Kγ−4

D:

Particle diameter size, μm

I:

The electric current, I

lg :

Gas molecules mean free path

P:

Pressure, Pa

q:

Heat flux, W·m2

t:

Time, s

T:

Temperature, K/°C

U:

Voltage, V

δ :

The thickness of the specimen, m

γ :

A factor of the characteristic temperature of λr

ΔT :

Temperature difference, K

φ :

Volume fraction

λ :

Thermal conductivity, W·m1·K1

λ′:

Spectrum

ρ :

Density, g·cm3

ρ b :

Density of the skeleton, g·cm3

σ :

Stefan-Boltzmann constant, W·m2·K4

a:

Aerogel

ao :

Opacifier doped silica aerogel

b:

Black-body

c:

Cold surface

cd:

Heat conduction of silica aerogel composite

e:

Effective

ext:

Extinction

f:

Fiber

g:

Gaseous-contributed

h:

Hot surface

op:

Opacifier

r:

Radiation

s:

Solid-contributed

References

  1. S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127, 741–741 (1931)

    Article  ADS  Google Scholar 

  2. C.Y. Zhu, Z.Y. Li, H.Q. Pang, N. Pan, Numerical modeling of the gas-contributed thermal conductivity of aerogels. Int. J. Heat Mass Transfer 131, 217–225 (2019)

    Article  Google Scholar 

  3. T. Xie, Y.L. He, Heat transfer characteristics of silica aerogel composite materials: structure reconstruction and numerical modeling. Int. J. Heat Mass Transfer 95, 621–635 (2016)

    Article  Google Scholar 

  4. G.S. Wei, Y.D. Zhang, C. Xu, X.Z. Du, Y.P. Yang, A thermal conductivity study of double-pore distributed powdered silica aerogels. Int. J. Heat Mass Transfer 108, 1297–1304 (2017)

    Article  Google Scholar 

  5. F.P. Soorbaghi, M. Kokabi, A.R. Bahramian, Predicting the effective thermal conductivity of silica/clay mineral nanocomposite aerogels. Int. J. Heat Mass Transfer 136, 899–910 (2019)

    Article  Google Scholar 

  6. V.G. Parale, W. Han, K.Y. Lee, H.N.R. Jung, H.H. Park, Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area. Solid State Sci. 75, 63–70 (2018)

    Article  ADS  Google Scholar 

  7. P. Gupta, B. Singh, A.K. Agrawal, P.K. Maji, Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater. Des. 158, 224–236 (2018)

    Article  Google Scholar 

  8. J.J. Zhang, Z.G. Qu, R.P. Fu, Y.L. He, Experimental study on the transient thermal characteristics of an integrated deflector under the periodic impingement of a supersonic flame jet. Int. J. Heat Mass Transfer 85, 811–823 (2015)

    Article  Google Scholar 

  9. Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int. J. Heat Mass Transfer 127, 838–856 (2018)

    Article  Google Scholar 

  10. A. Hoseini, C. McCague, M. Andisheh-Tadbir, M. Bahrami, Aerogel blankets: from mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transfer 93, 1124–1131 (2016)

    Article  Google Scholar 

  11. Y. Nagasaka, A. Nagashima, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method. J. Phys. E: Sci. Instrum. 14(12), 1435 (1981)

    Article  ADS  Google Scholar 

  12. G.S. Wei, X.X. Zhang, F. Yu, Thermal conductivity measurements on xonotlite-type calcium silicate by the transient hot-strip method. J. Univ. Sci. Technol. Beijing Min. Metall. Mater. 15, 791–795 (2008)

    Google Scholar 

  13. S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991)

    Article  ADS  Google Scholar 

  14. Q.Y. Zheng, S. Kaur, C. Dames, R.S. Prasher, Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. Int. J. Heat Mass Transfer 151, 119331 (2020)

    Article  Google Scholar 

  15. H. Zhang, Y. Jin, W. Gu, Z.Y. Li, W.Q. Tao, A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Prog. Comput. Fluid Dyn. Int. J. 13, 191–201 (2013)

    Article  Google Scholar 

  16. O. Almanza, M. Rodríguez-Pérez, J. De Saja, Applicability of the transient plane source method to measure the thermal conductivity of low-density polyethylene foams. J. Polym. Sci. Part B: Polym. Phys. 42, 1226–1234 (2004)

    Article  ADS  Google Scholar 

  17. A. Standard, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus, Designation: C177–13, (2004)

  18. D.M. Smith, A. Maskara, U. Boes, Aerogel-based thermal insulation. J. Non-Cryst. Solids 225, 254–259 (1998)

    Article  ADS  Google Scholar 

  19. B. Yuan, S.Q. Ding, D.D. Wang, G. Wang, H. Li, Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater. Lett. 75, 204–206 (2012)

    Article  Google Scholar 

  20. S.C. Lee, G.R. Cunnington, Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J. Thermophys. Heat Transfer 14, 121–136 (2000)

    Article  Google Scholar 

  21. G.T. 10295-2008, Thermal insulation determination of steady-state thermal resistance and related properties heat flow meter apparatus, China Standards Press, Beijing (2008)

  22. G. 329-87, Test method for steady-state thermal conductivity of heat insulating materials over moderate temperature, China Military Standards Press (1987)

  23. N. Bheekhun, A.A. Talib, S. Mustapha, R. Ibrahim. M.R. Hassan, Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying, in: IOP Conference Series: Mater. Sci. Eng., IOP Publishing, 2016, pp. 012066.

  24. H. Liu, X.L. Xia, Q. Ai, X.Q. Xie, C. Sun, Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite. Exp. Therm Fluid Sci. 84, 67–77 (2017)

    Article  Google Scholar 

  25. R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transfer 52, 4675–4682 (2009)

    Article  MATH  Google Scholar 

  26. M. Sans, V. Schick, G. Parent, O. Farges, Experimental characterization of the coupled conductive and radiative heat transfer in ceramic foams with a flash method at high temperature. Int. J. Heat Mass Transfer 148, 119077 (2020)

    Article  Google Scholar 

  27. J.R. Howell, M.P. Menguc, R. Siegel, Thermal Radiation Heat Transfer (CRC Press, New York, 2015)

    Book  Google Scholar 

  28. S. Kistler, A. Caldwell, Thermal conductivity of silica aerogel. Ind. Eng. Chem. 26, 658–662 (1934)

    Article  Google Scholar 

  29. H. Zhang, W.Z. Fang, X. Wang, Y.M. Li, W.Q. Tao, Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transfer 115, 21–31 (2017)

    Article  Google Scholar 

  30. G.H. Tang, Y. Zhao, J.F. Guo, Multi-layer graded doping in silica aerogel insulation with temperature gradient. Int. J. Heat Mass Transfer 99, 192–200 (2016)

    Article  Google Scholar 

  31. A. Alkurdi, C. Adessi, F. Tabatabaei, S. Li, K. Termentzidis, S. Merabia, Thermal transport across nanometre gaps: phonon transmission vs. air conduction. Int. J. Heat Mass Transfer 158, 119963 (2020)

    Article  Google Scholar 

  32. M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng.: R: Reports 63, 1–30 (2008)

    Article  Google Scholar 

  33. J.J. Zhao, Y.Y. Duan, X.D. Wang, X.R. Zhang, Y.H. Han, Y.B. Gao, Z.H. Lv, H.T. Yu, B.X. Wang, Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int. J. Therm. Sci. 70, 54–64 (2013)

    Article  Google Scholar 

  34. R. Progelhof, J. Throne, R. Ruetsch, Methods for predicting the thermal conductivity of composite systems: a review. Polym. Eng. Sci. 16, 615–625 (1976)

    Article  Google Scholar 

  35. Z.Y. Li, C.Y. Zhu, X.P. Zhao, A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Int. J. Heat Mass Transfer 108, 1982–1990 (2017)

    Article  Google Scholar 

  36. C.Y. Zhu, Z.Y. Li, Modeling of the apparent solid thermal conductivity of aerogel. Int. J. Heat Mass Transfer 120, 724–730 (2018)

    Article  Google Scholar 

  37. C. Bi, G. Tang, Z. Hu, H. Yang, J. Li, Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int. J. Heat Mass Transfer 79, 126–136 (2014)

    Article  Google Scholar 

  38. Y.L. He, T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 81, 28–50 (2015)

    Article  Google Scholar 

  39. J.M. Yang, H.J. Wu, G.S. Huang, Y.Y. Liang, Y.D. Liao, Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation. Mater. Des. 133, 224–236 (2017)

    Article  Google Scholar 

  40. Y. Zhao, G.H. Tang, M. Du, Numerical study of radiative properties of nanoporous silica aerogel. Int. J. Therm. Sci. 89, 110–120 (2015)

    Article  Google Scholar 

  41. H. Liu, X.L. Xia, X.Q. Xie, Q. Ai, D.H. Li, Experiment and identification of thermal conductivity and extinction coefficient of silica aerogel composite. Int. J. Therm. Sci. 121, 192–203 (2017)

    Article  Google Scholar 

  42. H.Q. Pang, Z.Y. Li, Experimental investigations on the thermal insulation performance of SiC opacifier doped silica aerogel at large temperature difference. Int. J. Therm. Sci. 160, 11 (2021)

    Google Scholar 

  43. P. Scheuerpflug, M. Hauck, J. Fricke, Thermal properties of silica aerogels between 1.4 and 330 K. J. Non-Cryst. Solids 145, 196–201 (1992)

    Article  ADS  Google Scholar 

  44. A. Bernasconi, T. Sleator, D. Posselt, J.K. Kjems, H.R. Ott, Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements. Phys. Rev. B 45, 10363 (1992)

    Article  ADS  Google Scholar 

  45. S.Q. Zeng, A. Hunt, R. Greif, Geometric structure and thermal conductivity of porous medium silica aerogel. J. Heat Transfer 117, 1055 (1995)

    Article  Google Scholar 

  46. D.M. Liu, B.W. Lin, Thermal conductivity in hot-pressed silicon carbide. Ceram. Int. 22, 407–414 (1996)

    Article  Google Scholar 

  47. J. Hilsenrath, Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam, US Department of Commerce, Natl. Bur. Stand. (1955)

  48. G.S. Wei, Y.S. Liu, X.X. Zhang, FYu.X.Z. Du, Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transfer 54, 2355–2366 (2011)

    Article  MATH  Google Scholar 

  49. S.Q. Zeng, A. Hunt, R. Greif, Transport properties of gas in silica aerogel. J. Non-Cryst. Solids 186, 264–270 (1995)

    Article  ADS  Google Scholar 

  50. K.Y. Wang, C.L. Tien, Radiative heat transfer through opacified fibers and powders. J. Quant. Spectrosc. Radiat. Transfer 30, 213–223 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00020) and the National Natural Science Foundation of China (No. 52006243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, HQ., Fan, TH., Zhu, CY. et al. Representation of the Characteristic Temperature of Correlative Thermal Conductivity of Opacifier-Fiber Doped Silica Aerogel by Steady-State Method at Large Temperature Differences. Int J Thermophys 43, 150 (2022). https://doi.org/10.1007/s10765-022-03068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03068-z

Keywords

Navigation