Skip to main content
Log in

SAFT Equations of State for Low GWP Hydrofluoroethers Heat Transfer Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Three SAFT equations of state: sPC-SAFT, Soft-SAFT and SAFT-BACK were fitted to five Hydrofluoroethers (HFEs): four perfluoroalkyl methyl ethers and one C6-fluoroketone. The fits were verified with experimental data consisting of vapor pressure, liquid and vapor density and the speed of sound. Two sets of PC-SAFT parameters for HFE fluids from the literature were also tested and compared with our results. The selected fluids are good candidates to replace perfluorocarbon heat transfer fluids, and the obtained fits are intended to support the challenging transition of cooling systems to more environment-friendly fluids. The SAFT equations of state coupled with group contribution methods enable mixtures of a multitude of compounds to be modeled and their equilibrium, solubility, absorption and other effects to be predicted. This can be helpful not only when studying the properties of useful mixtures but also when evaluating material compatibility and the effects of fluid contamination, which cause a lot of concern for cooling systems that require very high reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAD:

Absolute average deviation

VLE:

Vapor liquid equilibrium

PVT:

Pressure volume temperature

SoS:

Speed of sound

HFC:

Hydrofluoroolefins

HFE:

Hydrofluoroether

HFO:

Hydrofluoroolefins

A :

Helmholtz energy, J

a :

Constant Eq. 10

B :

First virial coefficient, m3·mol‒1

b :

Constant Eq. 10

c :

Constant Eq. 10

c p :

Isobaric heat capacity, J·mol‒1·K‒1

c v :

Isochoric heat capacity, J·mol‒1·K‒1

k b :

Boltzmann constant, J⋅K1

M :

Molecular weight, g⋅mol1

m :

Average chain length

OF :

Objective function

p :

Pressure, Pa

R :

Universal gas constant, J⋅K1⋅mol1

T :

Temperature, K

u :

Segment dispersion parameter, J

w :

Speed of sound, m⋅s1

α :

Geometry hard convex body (Saft-BACK parameter)

γ :

Heat capacity ratio, 1

ε :

Potential minimum, J

ν :

Segment volume parameter, cm3⋅mol1

ρ :

Density, kg⋅m3

σ :

Distance of zero potential, Å

a:

Acoustic

c:

Critical

r:

Reduced

0:

Ideal gas

calc:

Calculated

chain:

Chain formation contribution

dis:

Dispersion contribution

exp:

Experimental

hc:

Hard chain contribution

hcb:

Hard convex body contribution

pert:

Perturbed

ref:

Reference

res:

Residual

References

  1. Online document P. Gorbounov, M. Battistin, E. Thomas, Comparison of liquid coolants suitable for single-phase detector cooling (CERN, 2016) https://twiki.cern.ch/twiki/pub/LHCb/C6K/Coolants_review.pdf. Accessed 16 Mar 2022

  2. Online document P. Gorbounov, 3M Novec fluids as alternative to perfluorocarbons for detector cooling at CERN (CERN, 2015) https://indico.cern.ch/event/444246/attachments/1151300/1652860/FI_presentation_8.09.2015.pdf. Accessed 16 Mar 2022

  3. A. Massafferri, J. Instrum. (2020). https://doi.org/10.1088/1748-0221/15/08/C08006

    Article  Google Scholar 

  4. Online document P. Senger, CBM Progress Report 2019 (GSI Darmstadt Darmstadt, 2020) https://doi.org/10.15120/GSI-2020-00904. Accessed 16 Mar 2022

  5. B. Verlaat, P. Petagna, L. Zwalinski et al., Proceedings of the 25th IIR International Congress of Refrigeration (2019) https://doi.org/10.18462/iir.icr.2019.1690

  6. M. Battistin, S. Berry, A. Bitadze et al., Int. J. of Chem. React. Eng. 13, 4 (2015). https://doi.org/10.1515/ijcre-2015-0022

    Article  Google Scholar 

  7. Online document J. Godlewski, ATLAS mono-phase cooling systems (CERN, 2008) https://indico.cern.ch/event/41288/contributions/1871983/attachments/842452/1171868/ATLAS_mono-phase_systems.pdf. Accessed 16 Mar 2022

  8. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, REFPROP—Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, version 10.0 (2018)

  9. M.A. Marcelino Neto, J.R. Barbosa Jr., J. Supercrit. Fluid. 50, 1 (2009). https://doi.org/10.1016/j.supflu.2009.04.006

    Article  Google Scholar 

  10. Z. Hu, J. Yang, Y. Li, Fluid Phase Equilib. 205, 1 (2003). https://doi.org/10.1016/S0378-3812(02)00307-2

    Article  Google Scholar 

  11. N. Chouireb, E.A. Crespo, L.M.C. Pereira, O. Tafat-Igoudjilene, L.F. Vega, J.A.P. Coutinho, P.J. Carvalho, J. Chem. Eng. Data 63, 7 (2018). https://doi.org/10.1021/acs.jced.7b00945

    Article  Google Scholar 

  12. N. Solms, M.L. Michelsen, G.M. Kontogeorgis, Ind. Eng. Chem. Res. 44, 9 (2005). https://doi.org/10.1021/ie049089y

    Article  Google Scholar 

  13. V. Vinš, A. Aminian, D. Celný, M. Součková, J. Klomfar, M. Čenský, O. Prokopová, Int. J. Refrig. (2021). https://doi.org/10.1016/j.ijrefrig.2021.06.029

    Article  Google Scholar 

  14. Online document 3M™ Novec™ 649 Engineered Fluid Product Information (3M, 2021) https://multimedia.3m.com/mws/media/569865O/3m-novec-engineered-fluid-649.pdf. Accessed 16 Mar 2022

  15. M.O. McLinden, R.A. Perkins, E.W. Lemmon, T.J. Fortin, J. Chem. Eng. Data (2015). https://doi.org/10.1021/acs.jced.5b00623

    Article  Google Scholar 

  16. Online document 3M™ Novec™ 7000 Engineered Fluid Technical Data (3M, 2021) https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf. Accessed 16 Mar 2022

  17. Online document 3M™ Novec™ 7100 Engineered Fluid Product Information (3M, 2021) https://multimedia.3m.com/mws/media/199818O/3m-novec-7100-engineered-fluid.pdf. Accessed 16 Mar 2022

  18. W.T. Tsai, J. Hazard. Mater. (2005). https://doi.org/10.1016/j.jhazmat.2004.12.018

    Article  Google Scholar 

  19. N. Solms, I. Kouskoumvekaki, M. Michelsen, G. Kontogeorgis, Fluid Phase Equilib. (2006). https://doi.org/10.1016/J.FLUID.2006.01.001

    Article  Google Scholar 

  20. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 4 (2001). https://doi.org/10.1021/ie0003887

    Article  Google Scholar 

  21. J. Vijande, M.M. Piñeiro, D. Bèssieres, H. Saint-Guironsb, J.L. Legido, Phys. Chem. Chem. Phys. (2004). https://doi.org/10.1039/B312223A

    Article  Google Scholar 

  22. K. Řehak, M. Klajmon, M. Strejc, P. Moravek, J. Chem. Eng. Data 62, 11 (2017). https://doi.org/10.1021/acs.jced.7b00599

    Article  Google Scholar 

  23. F. Llovell, L.F. Vega, J. Phys. Chem. B 110, 23 (2006). https://doi.org/10.1021/jp0608022

    Article  Google Scholar 

  24. A.M.A. Dias, J.C. Pàmies, J.A.P. Coutinho, I.M. Marrucho, L.F. Vega, J. Phys. Chem. B 108, 4 (2004). https://doi.org/10.1021/jp036225o

    Article  Google Scholar 

  25. Z. Zhang, J. Yang, Y. Li, Fluid Phase Equilib. 172, 2 (2000). https://doi.org/10.1016/S0378-3812(00)00386-1

    Article  Google Scholar 

  26. T. Boublík, J. Mol. Liq. 134, 1–3 (2007). https://doi.org/10.1016/j.molliq.2006.12.008

    Article  Google Scholar 

  27. Z. Zhang, Z. Hu, J. Yang, Y. Li, Tsinghua Sci. Technol. 7, 1 (2002)

    Google Scholar 

  28. M. Salimi, A. Bahramian, Petrol. Sci. Technol. 32, 4 (2014). https://doi.org/10.1080/10916466.2011.580301

    Article  Google Scholar 

  29. M. Doubek, V. Vacek, Chem. Eng. Data 61, 12 (2016). https://doi.org/10.1021/acs.jced.6b00536

    Article  Google Scholar 

  30. R.A. Perkins, M.O. McLinden, J. Chem. Thermodyn. 91, 43–61 (2015). https://doi.org/10.1016/j.jct.2015.07.005

    Article  Google Scholar 

  31. Online document M.L. Huber, E.W. Lemmon, Properties of Fire Suppressant Systems “PROFISSY” (NIST, 2021) https://doi.org/10.6028/NIST.TN.2132. Accessed 11 Feb 2022

  32. M.H. Rausch, L. Kretschmer, S. Will, A. Leipert, A.P. Fröba, J. Chem. Eng. Data 60, 12 (2015). https://doi.org/10.1021/acs.jced.5b00691

    Article  Google Scholar 

  33. K. Tanaka, JSRAE 32, 3 (2015). https://doi.org/10.11322/tjsrae.15-15_OA

    Article  Google Scholar 

  34. H. Ohta, Y. Morimoto, J.V. Widiatmo, K. Watanabe, J. Chem. Eng. Data (2001). https://doi.org/10.1021/je0002538

    Article  Google Scholar 

  35. T. Lafitte, F. Plantier, M.M. Pineiro, J. Daridon, D. Bessieres, Ind. Eng. Chem. Res. (2007). https://doi.org/10.1021/ie0700462

    Article  Google Scholar 

  36. H. Qi, D. Fang, X. Meng, J. Wu, J. Chem. Thermodyn. (2014). https://doi.org/10.1016/j.jct.2014.05.017

    Article  Google Scholar 

  37. M.M. Piñeiro, F. Plantier, D. Bessières, J.L. Legido, J.L. Daridon, Fluid Phase Equilib. (2004). https://doi.org/10.1016/j.fluid.2004.06.013

    Article  Google Scholar 

  38. B. An, Y. Duan, F. Yang, Z. Yang, J. Chem. Eng. Data (2015). https://doi.org/10.1021/acs.jced.5b00513

    Article  Google Scholar 

  39. Y. Kayukawa, M. Hasumoto, T. Hondo, Y. Kano, K. Watanabe, J. Chem. Eng. Data (2003). https://doi.org/10.1021/je025657

    Article  Google Scholar 

  40. J.V. Widiatmo, T. Tsuge, K. Watanabe, J. Chem. Eng. Data (2001). https://doi.org/10.1021/je0101247

    Article  Google Scholar 

  41. S.B. Kiselev, J.F. Ely, Ind. Eng. Chem. Res. (1999). https://doi.org/10.1021/ie990387i

    Article  Google Scholar 

Download references

Acknowledgements

The work presented here received support from the European Regional Development Fund—Project “Center for Advanced Applied Science” (Grant No CZ.02.1.01/0.0/0.0/16_019/0000778) and also from the Project for the Large Research Structures of the Ministry of Education of the Czech Republic (Grant No. LM201804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Doubek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubek, M., Vacek, V. SAFT Equations of State for Low GWP Hydrofluoroethers Heat Transfer Fluids. Int J Thermophys 43, 138 (2022). https://doi.org/10.1007/s10765-022-03063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03063-4

Keywords

Navigation