Skip to main content
Log in

Temperature and Heat Flux Dependence of Interfacial Thermal Resistance for Water Between Platinum, Palladium, Lead and Nickel Nanochannel Walls

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The reversed non-equilibrium molecular dynamics method is used to determine the interfacial thermal resistance (ITR) between liquid water and two parallel nanochannel walls. The walls are made of four different transient metals (Platinum, Palladium, Lead, and Nickel). The mean temperature of water between walls is kept constant. Different runs are made where the mean temperature for each simulation is changed from 300 K to 600 K with increments of 50 K. The temperature differences and the heat flux at the intersections of water and the walls are evaluated using numerical simulations and the ITR values are calculated. It is shown that the ITR value increases with the temperature increase, and decreases with the heat flux increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793–818 (2003). https://doi.org/10.1063/1.1524305

    Article  ADS  Google Scholar 

  2. T. Ma, P. Chakraborty, X. Guo, L. Cao, Y. Wang, Int. J. Thermophys. 41, 1–37 (2020). https://doi.org/10.1007/s10765-019-2583-4

    Article  Google Scholar 

  3. D. Torii, T. Ohara, K. Ishida, J. Heat Transf. 132, 012402 (2010). https://doi.org/10.1115/1.3211856

    Article  Google Scholar 

  4. S.W. Chang, A.K. Nair, M.J. Buehler, J. Phys. Condens. Matter. 24, 245301 (2012). https://doi.org/10.1088/0953-8984/24/24/245301

    Article  ADS  Google Scholar 

  5. S. Ge, M. Chen, Int. J. Thermophys. 34, 64–77 (2013). https://doi.org/10.1007/s10765-012-1362-2

    Article  ADS  Google Scholar 

  6. G. Song, C. Min, Mol. Phys. 111, 903–908 (2013). https://doi.org/10.1080/00268976.2012.756990

    Article  ADS  Google Scholar 

  7. M. Barisik, A. Beskok, Int. J. Therm. Sci. 77, 47–54 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.10.012

    Article  Google Scholar 

  8. Y. Feng, X. Liang, Int. J. Thermophys. 36, 1519–1529 (2015). https://doi.org/10.1007/s10765-015-1897-0

    Article  ADS  Google Scholar 

  9. J.L. Barrat, F. Chiaruttini, Mol. Phys. 101, 1605–1610 (2003). https://doi.org/10.1080/0026897031000068578

    Article  ADS  Google Scholar 

  10. B.H. Kim, A. Beskok, T. Cagin, J. Chem. Phys. 129, 174701 (2008). https://doi.org/10.1063/1.3001926

    Article  ADS  Google Scholar 

  11. M. Barisik, A. Beskok, J. Comput. Phys. 231, 7881–7892 (2012). https://doi.org/10.1016/j.jcp.2012.07.026

    Article  ADS  Google Scholar 

  12. X. Wang, P. Cheng, X. Quan, Int. Commun. Heat Mass 77, 183–189 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.08.006

    Article  Google Scholar 

  13. A.T. Pham, M. Barisik, B. Kim, Int. J. Heat Mass Transf. 97, 422–431 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.040

    Article  Google Scholar 

  14. T.Q. Vo, B. Kim, Int. J. Precis. Eng. Manuf. 16, 1341–1346 (2015). https://doi.org/10.1007/s12541-015-0176-0

    Article  Google Scholar 

  15. J. Vera, Y. Bayazitoglu, Int. J. Heat Mass Transf. 86, 433–442 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.033

    Article  Google Scholar 

  16. M.M. Aksoy, M. AlHosani, Y. Bayazitoglu, Int. J. Thermophys. 42, 1–12 (2021). https://doi.org/10.1007/s10765-021-02840-x

    Article  Google Scholar 

  17. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar et al., Appl. Phys. Rev. 1, 11305 (2014). https://doi.org/10.1063/1.4832615

    Article  Google Scholar 

  18. P. Zhang, P. Yuan, X. Jiang, S. Zhai, J. Zeng, Y. Xian, H. Qin, D. Yang, Small 14, 1702769 (2018). https://doi.org/10.1002/smll.201702769

    Article  Google Scholar 

  19. G. Chen, Nat. Rev. Phys. 3, 555–569 (2021). https://doi.org/10.1038/s42254-021-00334-1

    Article  Google Scholar 

  20. G. Chen, J. Heat Transf. (2022). https://doi.org/10.1115/1.4052657

    Article  Google Scholar 

  21. D.J. Evans, W.G. Hoover, Annu. Rev. Fluid Mech. 18, 243–264 (1986). https://doi.org/10.1146/annurev.fl.18.010186.001331

    Article  ADS  Google Scholar 

  22. F. Zhang, D.J. Isbister, D. Evans, Int. J. Thermophys. 22, 135–147 (2001). https://doi.org/10.1023/A:1006711820344

    Article  Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  24. S.A. Deshmukh, S.K.R.S. Sankaranarayanan, D.C. Mancini, J. Phys. Chem. B 116, 5501–5515 (2012). https://doi.org/10.1021/jp211831x

    Article  Google Scholar 

  25. L. Fritz, D. Hofmann, Polymer 38, 1035–1045 (1997). https://doi.org/10.1016/S0032-3861(96)00600-3

    Article  Google Scholar 

  26. J.R. Maple, M. Hwang, T.P. Stockfisch, U. Dinur, M. Waldman, C.S. Ewig, A.T. Hagler, J. Comput. Chem. 15, 162–182 (1994)

    Article  Google Scholar 

  27. M. Waldman, A. Hagler, J. Comput. Chem. 14, 1077–1084 (1993). https://doi.org/10.1002/jcc.540140909

    Article  Google Scholar 

  28. H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik, J. Phys. Chem. C 112, 17281–17290 (2008). https://doi.org/10.1021/jp801931d

    Article  Google Scholar 

  29. H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. 116, 2978–2987 (1994). https://doi.org/10.1021/ja00086a030

    Article  Google Scholar 

  30. H. Sun, J. Comput. Chem. 15, 752–768 (1994). https://doi.org/10.1002/jcc.540150708

    Article  Google Scholar 

  31. H. Sun, Macromolecules 28, 701–712 (1995). https://doi.org/10.1021/ma00107a006

    Article  ADS  Google Scholar 

  32. S.A. Deshmukh, Z. Li, G. Kamath, K.J. Suthar, S.K. Sankaranarayanan, D.C. Mancini, Polymer 54, 210–222 (2013). https://doi.org/10.1016/j.polymer.2012.11.009

    Article  Google Scholar 

  33. F. Müller-Plathe, J. Chem. Phys. 106, 6082–6085 (1997). https://doi.org/10.1063/1.473271

    Article  ADS  Google Scholar 

  34. J. Shiomi, Annu. Rev. Heat Transf. 17, 177–203 (2014). https://doi.org/10.1615/AnnualRevHeatTransfer.2014007407

    Article  Google Scholar 

  35. M. Zhang, E. Lussetti, L.E. de Souza, F. Müller-Plathe, J. Phys. Chem. B 109, 15060–15067 (2005). https://doi.org/10.1021/jp0512255

    Article  Google Scholar 

  36. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 2nd edn. (Oxford University Press, Oxford, 2017)

    Book  Google Scholar 

  37. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, vol. 1 (Elsevier, 2001)

  38. D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.81.214305

    Article  Google Scholar 

  39. H.S. Sazak, N. Mutlu, Commun. Stat. Simulat. (2021). https://doi.org/10.1080/03610918.2021.1928196

    Article  Google Scholar 

  40. P.W. Holland, R.E. Welsch, Commun. Stat. Theory 6, 813–827 (1977). https://doi.org/10.1080/03610927708827533

    Article  Google Scholar 

  41. T.K. Tullius, Y. Bayazitoglu, Int. J. Heat Mass Transf. 93, 980–990 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.038

    Article  Google Scholar 

  42. X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 6, 28–32 (2011). https://doi.org/10.1038/nnano.2010.235

    Article  ADS  Google Scholar 

  43. X. Qiu, H. Zhang, P. Wu, F. Zhang, S. Wei, D. Sun, L. Xu, Y. Tang, Adv. Funct. Mater. 27, 1603852 (2017). https://doi.org/10.1002/adfm.201603852

    Article  Google Scholar 

  44. L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Science 354, 1410–1414 (2016). https://doi.org/10.1126/science.aah6133

    Article  ADS  Google Scholar 

  45. A. Mahata, P. Garg, K.S. Rawat, P. Bhauriyal, B. Pathak, J. Mater. Chem. A 5, 5303–5313 (2017). https://doi.org/10.1039/C7TA00685C

    Article  Google Scholar 

  46. Z. Xing, Q. Li, D. Wang, X. Yang, X. Sun, Electrochim. Acta 191, 841–845 (2016). https://doi.org/10.1016/j.electacta.2015.12.174

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial support from the Department of Mechanical Engineering at Rice University and the financial support of Turkish Ministry of National Education for M. M. Aksoy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiz Bayazitoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, M.M., Bayazitoglu, Y. Temperature and Heat Flux Dependence of Interfacial Thermal Resistance for Water Between Platinum, Palladium, Lead and Nickel Nanochannel Walls. Int J Thermophys 43, 128 (2022). https://doi.org/10.1007/s10765-022-03057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03057-2

Keywords

Navigation