Skip to main content
Log in

Comparative Study on Critical Points of Carbon Dioxide-Based Binary Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2)-based mixtures are potential working fluids of power cycles, the addition of another substance causes a change in the critical point compared to pure CO2, and the knowledge on critical points is important for the analysis and optimization of power cycles. In the present study, the critical points of binary mixture containing CO2 and one of other substances are studied, including n-alkane (C2–C6), isomer of pentane, alkan-1-ol (C1–C4), hydrofluorocarbon, hydrofluoroolefin and inert gas (xenon). The available experimental data of these binary mixtures are collected from literature and correlated by Chueh–Prausnitz and Redlich–Kister methods, and the applicability of each method is discussed. How the critical point of CO2 varies with the species and proportion of additives is studied by comparative analysis, and the applicability for different CO2 mixtures for meeting the corresponding critical temperature requirement of power cycles is discussed. At last, research suggestion for the critical points of CO2 mixtures that need to be focused on is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Polikhronidi, R. Batyrova, A. Aliev, I. Abdulagatov, J. Therm. Sci. 28, 394 (2019). https://doi.org/10.1007/s11630-019-1118-4

    Article  Google Scholar 

  2. M.T. White, G. Bianchi, L. Chai, S.A. Tassou, A.I. Sayma, Appl. Therm. Eng. 185, 116447 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116447

    Article  Google Scholar 

  3. L. Irwin, Y. Le Moullec, Science 356, 805 (2017). https://doi.org/10.1126/science.aam8281

    Article  ADS  Google Scholar 

  4. J.L. Xu, C. Liu, E.H. Sun, J. Xie, M.J. Li, Y.P. Yang, J.Z. Liu, Energy 186, 115831 (2019). https://doi.org/10.1016/j.energy.2019.07.161

    Article  Google Scholar 

  5. Y.H. Du, G.H. Tian, M. Pekris, Appl. Therm. Eng. 201, 117722 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117722

    Article  Google Scholar 

  6. A.F. Yu, W. Su, X.X. Lin, N.J. Zhou, Nucl. Eng. Technol. 53, 699 (2021). https://doi.org/10.1016/j.net.2020.08.005

    Article  Google Scholar 

  7. G. Shu, L. Shi, H. Tian, S. Deng, X. Li, L. Chang, Appl. Energy 186, 423 (2017). https://doi.org/10.1016/j.apenergy.2016.03.049

    Article  Google Scholar 

  8. J. Sarkar, Energy 34, 1172 (2009). https://doi.org/10.1016/j.energy.2009.04.030

    Article  Google Scholar 

  9. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996). https://doi.org/10.1063/1.555991

    Article  ADS  Google Scholar 

  10. W.S. Jeong, Y.H. Jeong, Nucl. Eng. Des. 262, 12 (2013). https://doi.org/10.1016/j.nucengdes.2013.04.006

    Article  Google Scholar 

  11. W.S. Jeong, J.I. Lee, Y.H. Jeong, Nucl. Eng. Des. 241, 2128 (2011). https://doi.org/10.1016/j.nucengdes.2011.03.043

    Article  Google Scholar 

  12. P. Liu, G.Q. Shu, H. Tian, W. Feng, L.F. Shi, Z.Q. Xu, Energy Convers. Manage 198, 111776 (2019). https://doi.org/10.1016/j.enconman.2019.111776

    Article  Google Scholar 

  13. P. Liu, G.Q. Shu, H. Tian, W. Feng, L.F. Shi, X. Wang, Energy Convers. Manage. 208, 112574 (2020). https://doi.org/10.1016/j.enconman.2020.112574

    Article  Google Scholar 

  14. J.Q. Guo, M.J. Li, Y.L. He, J.L. Xu, Appl. Energy 256, 113837 (2019). https://doi.org/10.1016/j.apenergy.2019.113837

    Article  Google Scholar 

  15. G.Q. Shu, Z.G. Yu, H. Tian, P. Liu, Z.Q. Xu, Energy Convers. Manage. 174, 668 (2018). https://doi.org/10.1016/j.enconman.2018.08.069

    Article  Google Scholar 

  16. X.C. Sun, L.F. Shi, H. Tian, X. Wang, Y.H. Zhang, G.Q. Shu, Energy Convers. Manage. 244, 114419 (2021). https://doi.org/10.1016/j.enconman.2021.114419

    Article  Google Scholar 

  17. Y. Yao, L. Shi, H. Tian, X. Wang, X. Sun, Y. Zhang, Z. Wu, R. Sun, G. Shu, Energy (2021). https://doi.org/10.1016/j.energy.2021.122471

    Article  Google Scholar 

  18. A.I. Abdulagatov, G.V. Stepanov, I.M. Abdulagatov, High Temp. 45, 85 (2007). https://doi.org/10.1134/S0018151X07010117

    Article  Google Scholar 

  19. P.L. Chueh, J.M. Prausnitz, Aiche J. 13, 1107 (1967). https://doi.org/10.1002/aic.690130613

    Article  Google Scholar 

  20. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th edn. (McGraw-Hill, New York, 1987), pp. 126–133

    Google Scholar 

  21. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  22. L. Gil, S.T. Blanco, C. Rivas, E. Laga, J. Fernandez, M. Artal, I. Velasco, J. Supercrit. Fluid 71, 26 (2012). https://doi.org/10.1016/j.supflu.2012.07.008

    Article  Google Scholar 

  23. N. Juntarachat, A. Valtz, C. Coquelet, R. Privat, J.-N. Jaubert, Int. J. Refrig. 47, 141 (2014). https://doi.org/10.1016/j.ijrefrig.2014.09.001

    Article  Google Scholar 

  24. N. Juntarachat, S. Bello, R. Privat, J.-N. Jaubert, Fluid. Phase Equilib. 325, 66 (2012). https://doi.org/10.1016/j.fluid.2012.04.010

    Article  Google Scholar 

  25. S. Horstmann, K. Fischer, J. Gmehling, P. Kolar, J. Chem. Thermodyn. 32(4), 451 (2000). https://doi.org/10.1006/jcht.2000.0611

    Article  Google Scholar 

  26. N. Juntarachat, S. Bello, R. Privat, J.N. Jaubert, J. Chem. Eng. Data 58, 671 (2013). https://doi.org/10.1021/je301209u

    Article  Google Scholar 

  27. J. Liu, Z. Qin, G. Wang, X. Hou, J. Wang, J. Chem. Eng. Data 48, 1610 (2003). https://doi.org/10.1021/je034127q

    Article  Google Scholar 

  28. L.S. Pan, Y.J. Ma, T. Li, H.X. Li, B. Li, X.L. Wei, Energy 179, 454 (2019). https://doi.org/10.1016/j.energy.2019.05.010

    Article  Google Scholar 

  29. I.H. Bell, A. Jager, Fluid Phase Equilib. 433, 159 (2017). https://doi.org/10.1016/j.fluid.2016.10.030

    Article  Google Scholar 

  30. I.H. Bell, U.K. Deiters, Aiche J. 64, 2745 (2018). https://doi.org/10.1002/aic.16074

    Article  Google Scholar 

  31. W.B. Kay, Acc. Chem. Res. 1, 344 (2002). https://doi.org/10.1021/ar50011a004

    Article  Google Scholar 

  32. H. Chen, J.A. Zollweg, W.B. Streett, J. Chem. Eng. Data 7, 157 (1992). https://doi.org/10.1021/je00057a018

    Article  Google Scholar 

  33. A.D. Leu, D.B. Robinson, J. Chem. Eng. Data 33, 313 (1988). https://doi.org/10.1021/je00053a026

    Article  Google Scholar 

  34. B.E. Poling, J.M. Prausnitz, J.P. Oonnell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001), p. 2.3-2.4

    Google Scholar 

  35. A. Diefenbacher, M. Türk, J. Chem. Thermodyn. 34, 1361 (2002). https://doi.org/10.1016/s0021-9614(02)00123-4

    Article  Google Scholar 

  36. A. Kordikowski, D.G. Robertson, A.I. Aguiar-Ricardo, V.K. Popov, S.M. Howdle, M. Poliakoff, J. Phys. Chem. 100, 9522 (1996). https://doi.org/10.1021/jp960010f

    Article  Google Scholar 

  37. M.H. Yang, Energy Convers. Manage. 151, 86 (2017). https://doi.org/10.1016/j.enconman.2017.08.059

    Article  Google Scholar 

  38. B.M. Dai, C.B. Dang, M.X. Li, H. Tian, Y.T. Ma, Int. J. Refrig. 56, 1 (2015). https://doi.org/10.1016/j.ijrefrig.2014.11.009

    Article  Google Scholar 

  39. B.M. Dai, M.X. Li, Y.T. Ma, Energy 64, 942 (2014). https://doi.org/10.1016/j.energy.2013.11.019

    Article  Google Scholar 

  40. A. Yu, W. Su, L. Zhao, X. Lin, N. Zhou, Energies 13, 1741 (2020). https://doi.org/10.3390/en13071741

    Article  Google Scholar 

  41. J.Q. Guo, M.J. Li, J.L. Xu, J.J. Yan, K. Wang, Energy 173, 785 (2019). https://doi.org/10.1016/j.energy.2019.02.008

    Article  Google Scholar 

  42. V.G. Martynets, N.V. Kuskova, E.V. Matizen, V.F. Kukarin, J. Chem. Thermodyn. 31, 191 (1999). https://doi.org/10.1006/jcht.1998.0438

    Article  Google Scholar 

  43. N. Ribeiro, T. Casimiro, C. Duarte, M.N. da Ponte, A. Aguiar-Ricardo, M. Poliakoff, J. Phys. Chem. B 104, 791 (2000). https://doi.org/10.1021/jp991953q

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Natural Science Foundation of China (No. 52022066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Tian or Gequn Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Tian, H., Wu, Z. et al. Comparative Study on Critical Points of Carbon Dioxide-Based Binary Mixtures. Int J Thermophys 43, 122 (2022). https://doi.org/10.1007/s10765-022-03048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03048-3

Keywords

Navigation