Skip to main content

Advertisement

Log in

Effect of the Metal–Insulator Transition on the Thermoelectric Properties of Composites Based on \({\mathrm{Bi}}_{0.5}{\mathrm{Sb}}_{1.5}{\mathrm{Te}}_{3}\) with \({\mathrm{VO}}_{2}\) Nanoparticles

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Bismuth telluride-based materials have been widely investigated due to their applications for the development of high-performance thermoelectric devices. Here, we numerically determine the effective electrical conductivity (\({\sigma }_{eff}\)), thermal conductivity (\({k}_{eff}\)), and Seebeck coefficient (\({S}_{eff}\)) of composite materials made up of \({\mathrm{VO}}_{2}\) nanoparticles embedded in a \({\mathrm{Bi}}_{0.5}{\mathrm{Sb}}_{1.5}{\mathrm{Te}}_{3}\) (BST) matrix. The temperature evolution of these three properties along with the thermoelectric figure of merit (\(ZT={\sigma }_{eff}{S}_{eff}^{2}T/{k}_{eff}\)) is analyzed across the metal–insulator transition of \({\mathrm{VO}}_{2}\) and for temperatures up to 550 K. For temperatures higher than 350 K, it is shown that \({\mathrm{VO}}_{2}\) nanoparticles with a concentration of 34 % enhance the electrical conductivity and ZT of the matrix by about 16 % and 10 %, respectively, while the Seebeck coefficient remains pretty much constant. This indicates that \({\mathrm{VO}}_{2}\) nanoparticles provide an effective way to enhance the thermoelectric efficiency of \({\mathrm{Bi}}_{0.5}{\mathrm{Sb}}_{1.5}{\mathrm{Te}}_{3}\) materials. The calculated ZT values for \({\mathrm{VO}}_{2}\) are in good agreement with the experimental data reported in the literature for temperatures higher than 350 K. The thermal conductivity values obtained for \({\mathrm{VO}}_{2}\) in the insulating phase are in good agreement with the experimental data reported in the literature, which are used to calculate the interface thermal resistance between \({\mathrm{Bi}}_{0.5}{\mathrm{Sb}}_{1.5}{\mathrm{Te}}_{3}\) and \({\mathrm{VO}}_{2}\). Furthermore, the ratio \({k}_{eff}/T{\sigma }_{eff}\) is found to be higher than the Lorenz number for pure metals. Above the transition temperature of \({\mathrm{VO}}_{2}\) (342.5 K), this ratio increases with temperature and concentration, allowing to evaluate the role of electrons as energy carriers in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L.E. Bell, Science 321, 1457 (2008)

    Article  ADS  Google Scholar 

  2. I.G. Austin, Proc. Phys. Soc. 72, 545 (1958)

    Article  ADS  Google Scholar 

  3. Z.-H. Ge, X. Chong, D. Feng, Y.-X. Zhang, Y. Qiu, L. Xie, P.-W. Guan, J. Feng, J. He, Mater. Today Phys. 8, 71 (2019)

    Article  Google Scholar 

  4. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  5. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  6. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013)

    Article  ADS  Google Scholar 

  7. M. Yeganeh, F. Kafi, A. Boochani, Superlatt. Microstruct. 138, 106367 (2020)

    Article  Google Scholar 

  8. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436 (1996)

    Article  ADS  Google Scholar 

  9. S.V. Faleev, F. Léonard, Phys. Rev. B 77, 214304 (2008)

    Article  ADS  Google Scholar 

  10. S. Il Kim, K. Ahn, D.-H. Yeon, S. Hwang, H.-S. Kim, S.M. Lee, K.H. Lee, Appl. Phys. Express 4, 91801 (2011)

    Article  Google Scholar 

  11. Z. Wanting, W. Hu, P. Wei, N. Xiaolei, W. Zhao, J. Electron. Mater. 49, 2962 (2020)

    Article  ADS  Google Scholar 

  12. C. Li, S. Ma, P. Wei, W. Zhu, X. Nie, X. Sang, Z. Sun, Q. Zhang, W. Zhao, Energy Environ. Sci. 13, 535 (2020)

    Article  Google Scholar 

  13. M. Gatti, F. Bruneval, V. Olevano, L. Reining, Phys. Rev. Lett. 99, 266402 (2007)

    Article  ADS  Google Scholar 

  14. G.R. Khan, B. Ahmad, Appl. Phys. A 123, 1 (2017)

    Article  ADS  Google Scholar 

  15. K.S. Karimov, M. Mahroof-Tahir, M. Saleem, M.T.S. Chani, A.K. Niaz, J. Semicond. 36, 73004 (2015)

    Article  Google Scholar 

  16. A. Paone, M. Joly, R. Sanjines, A. Romanyuk, J.-L. Scartezzini, A. Schüler, in Opt. Model. Meas. Sol. Energy Syst. III (International Society for Optics and Photonics, 2009), p. 74100F

  17. I.Y. Forero-Sandoval, J.A. Chan-Espinoza, J. Ordonez-Miranda, J.J. Alvarado-Gil, F. Dumas-Bouchiat, C. Champeaux, K. Joulain, Y. Ezzahri, J. Drevillon, C.L. Gomez-Heredia, Phys. Rev. Appl. 14, 34023 (2020)

    Article  Google Scholar 

  18. I. Kosta, C. Navone, A. Bianchin, E. García-Lecina, H. Grande, H.I. Mouko, J. Azpeitia, I. García, J. Alloys Compd. 856, 158069 (2021)

    Article  Google Scholar 

  19. S.Y. Back, J.H. Yun, H. Cho, G. Kim, J.-S. Rhyee, Materials (Basel). 14, 2506 (2021)

    Article  ADS  Google Scholar 

  20. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005).

  21. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  ADS  Google Scholar 

  22. J. Jung, S. Lee, B. Ryu, S. Ryu, Int. J. Heat Mass Transf. 144, 118–620 (2019)

    Article  Google Scholar 

  23. L. Qiu, Y. Du, Y. Bai, Y. Feng, X. Zhang, J. Wu, X. Wang, C. Xu, J. Therm. Sci. 30, 465 (2021)

    Article  ADS  Google Scholar 

  24. J. Ordonez-Miranda, Y. Ezzahri, K. Joulain, J. Drevillon, J.J. Alvarado-Gil, Phys. Rev. B 98, 1 (2018)

    Article  Google Scholar 

  25. L. Wang, L. Zhao, Z. Jiang, G. Luo, P. Yang, X. Han, X. Li, R. Maeda, AIP Adv. 9, 95067 (2019)

    Article  Google Scholar 

  26. S. Alvarez-Guerrero, J. Ordonez-Miranda, R. de Coss, J.J. Alvarado-Gil, Int. J. Therm. Sci. 172, 107278 (2022)

    Article  Google Scholar 

  27. F. Nilsson, J. Krueckel, D.W. Schubert, F. Chen, M. Unge, U.W. Gedde, M.S. Hedenqvist, Compos. Sci. Technol. 132, 16 (2016)

    Article  Google Scholar 

  28. J. Ordonez-Miranda, J.M. Hill, K. Joulain, Y. Ezzahri, J. Drevillon, J. Appl. Phys. 123, 1 (2018)

    Article  Google Scholar 

  29. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. 843, 1 (2020)

    Article  ADS  Google Scholar 

  30. L. Qiu, X. Zhang, Z. Guo, Q. Li, Carbon N. Y. 178, 391 (2021)

    Article  Google Scholar 

  31. S. Jasmee, G. Omar, S.S.C. Othaman, N.A. Masripan, H.A. Hamid, Polym. Compos. (2021)

  32. H. Kizuka, T. Yagi, J. Jia, Y. Yamashita, S. Nakamura, N. Taketoshi, Y. Shigesato, Jpn. J. Appl. Phys. 54, 053201 (2015)

    Article  ADS  Google Scholar 

  33. D.W. Oh, C. Ko, S. Ramanathan, D.G. Cahill, Appl. Phys. Lett. 96, (2010)

  34. J.K. Chen, X.L. Liu, X. Yuan, Y.L. Zhang, Y.F. Gao, Y.F. Zhou, R.H. Liu, L.D. Chen, N.F. Chen, Chin. Sci. Bull. 57, 3393 (2012)

    Article  Google Scholar 

  35. R. Kothari, C.T. Sun, R. Dinwiddie, H. Wang, Int. J. Heat Mass Transf. 66, 823 (2013)

    Article  Google Scholar 

  36. A. Gupta, R. Singhal, J. Narayan, D.K. Avasthi, J. Mater. Res. 26, 2901 (2011)

    Article  ADS  Google Scholar 

  37. Z. Yang, C. Ko, V. Balakrishnan, G. Gopalakrishnan, S. Ramanathan, Phys. Rev. B 82, 205101 (2010)

    Article  ADS  Google Scholar 

  38. K. Ulutas, D. Deger, S. Yakut, J. Phys. Conf. Ser. (IOP Publishing, 2013), p. 12040

  39. H. Shang, C. Dun, Y. Deng, T. Li, Z. Gao, L. Xiao, H. Gu, D.J. Singh, Z. Ren, F. Ding, J. Mater. Chem. A 8, 4552 (2020)

    Article  Google Scholar 

  40. E. Bin Kim, P. Dharmaiah, K.-H. Lee, C.-H. Lee, J.-H. Lee, J.-K. Yang, D.-H. Jang, D.-S. Kim, S.-J. Hong, J. Alloys Compd. 777, 703 (2019)

    Article  Google Scholar 

  41. S. Parsamehr, A. Boochani, M. Amiri, S. Solaymani, E. Sartipi, S. Naderi, A. Aminian, Philos. Mag. 101, 369 (2021)

    Article  ADS  Google Scholar 

  42. M. Ilkhani, A. Boochani, M. Amiri, M. Asshabi, D.P. Rai, Solid State Commun. 308, 113838 (2020)

    Article  Google Scholar 

  43. R. Pöttgen, T. Jüstel, C.A. Strassert, Rare Earth Chemistry (Walter de Gruyter GmbH & Co KG, 2020)

  44. S. Il Kim, S. Hwang, J.W. Roh, K. Ahn, D.-H. Yeon, K.H. Lee, S.W. Kim, J. Mater. Res. 27, 2449 (2012)

    Article  ADS  Google Scholar 

  45. C. Kittel, P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  46. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, Science 355, 371 (2017)

    Article  ADS  Google Scholar 

  47. L. Jin, S.E. Zeltmann, H.S. Choe, H. Liu, F.I. Allen, A.M. Minor, J. Wu, Phys. Rev. B 102, 41120 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ordonez-Miranda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Guerrero, S., Ordonez-Miranda, J., de Coss, R. et al. Effect of the Metal–Insulator Transition on the Thermoelectric Properties of Composites Based on \({\mathrm{Bi}}_{0.5}{\mathrm{Sb}}_{1.5}{\mathrm{Te}}_{3}\) with \({\mathrm{VO}}_{2}\) Nanoparticles. Int J Thermophys 43, 95 (2022). https://doi.org/10.1007/s10765-022-03022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03022-z

Keywords

Navigation