Skip to main content
Log in

Viscosity Measurements of Molten Metal Using an Improved Oscillating Crucible Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We developed a simple viscosity measurement method to directly evaluate the period and logarithmic decrement of oscillation. The viscosity of a molten metal is an important thermophysical property for production at high temperatures. However, the viscosities of molten metals are relatively low and difficult to measure because of challenges involved in their handling. Among several methods available for measuring viscosity, the oscillating crucible method is generally used with molten metals. The conventional method involves an approximation using a multistep iteration to determine the viscosity. The first step assumes that the oscillation period does not change and that only the amplitude decays. This method also assumes that the center of oscillation is close to the center of the array of photodiodes. Thus, it is necessary to consider whether the conditions are within a valid approximation range. In addition, it is necessary to determine the on/off thresholds to obtain binary data from the photodiode outputs. In this study, we developed a simple viscosity measurement method based on the principle of least squares to derive the period and logarithmic decrement of oscillation. To confirm the reproducibility of the proposed method, the viscosity of molten nickel was measured and found to be in good agreement with those reported in the literature. The measurement error was less than ± 3 %. Further, the experimental data showed good reproducibility, and the measurements were obtained with high accuracies using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Please contact the corresponding author.

Code Availability

In principle, not available. If needed, please contact the corresponding author.

References

  1. Y. Sato, K. Sugisawa, D. Aoki, T. Yamamura, Meas. Sci. Technol. 16, 363 (2005). https://doi.org/10.1088/0957-0233/16/2/006

    Article  ADS  Google Scholar 

  2. D.K. Belaschoeneko, Dokl. Akad. Nauk. SSSR 117, 98 (1957)

    Google Scholar 

  3. Y. Kawai, Proc. ICSTIS Suppl. Trans. ISIJ 11, 387 (1971)

    Google Scholar 

  4. Revised 4th Edition Metal Data Book, ed. by The Japan Institute of Metals and Materials, Maruzen, Tokyo (2004), p. 69 [in Japanese].

  5. E.N. Da, C. Andrade, E.R. Dobbs, Proc. R. Soc. 12, A211 (1952)

    Google Scholar 

  6. G. Cavalier, NPL Symp. Phys. Chem. Metal. Sol. Intermetal. Compd. 4D (1959).

  7. T. Ejima, Y. Sato, S. Yaegashi, E. Takeuchi, K. Tamai, J. Jpn. Inst. Met. 51, 328 (1987)

    Article  Google Scholar 

  8. T. Ejima, Y. Sato, T. Yamamura, A. Hayashi, T. Yamazaki, J. Jpn. Inst. Met. 54, 1005 (1990). https://doi.org/10.2320/jinstmet1952.54.9_1005

    Article  Google Scholar 

  9. W. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, Rev. Sci. Instrum. 64, 2961 (1993). https://doi.org/10.1063/1.1144475

    Article  ADS  Google Scholar 

  10. T. Ishikawa, P.F. Paradis, J. Okada, M.V. Kumar, Y. Watanabe, J. Chem. Thermodyn. 65, 1 (2013)

    Article  Google Scholar 

  11. I. Egry, G. Lohöfer, I. Seyhan, S. Schneider, B. Feuerbacher, Appl. Phys. Lett. 73, 462 (1998). https://doi.org/10.1063/1.121900

    Article  ADS  Google Scholar 

  12. K. Higuchi, H.-J. Fecht, R.K. Wunderlich, Adv. Eng. Mater. 9, 349 (2007). https://doi.org/10.1002/adem.200600277

    Article  Google Scholar 

  13. G.I. Tayler, Philos. Trans. R. Soc. Lond. A. 223, 289 (1923)

    Article  ADS  Google Scholar 

  14. J.O. Bockris, D.C.J. Lowe, J. Sci. Instrum. 30, 403 (1953). https://doi.org/10.1088/0950-7671/30/11/306

    Article  ADS  Google Scholar 

  15. R.F. Brooks, A.T. Dinsdale, P.N. Quested, Meas. Sci. Technol. 16, 354 (2005). https://doi.org/10.1088/0957-0233/16/2/005

    Article  ADS  Google Scholar 

  16. R. Roscoe, Proc. Phys. Soc. 72, 576 (1958). https://doi.org/10.1088/0370-1328/72/4/312

    Article  ADS  Google Scholar 

  17. T. Ejima, T. Yoko, G. Saito, Y. Kato, J. Jpn. Inst. Met. 43, 929 (1979). https://doi.org/10.2320/jinstmet1952.43.10_929

    Article  Google Scholar 

  18. T. Ohta, O. Borgen, W. Brockner, D. Fremstad, K. Grjotheim, K. Tørklep, H.A. Øye, Ber. Bunsen Ges. Phys. Chem. 79, 335 (1975). https://doi.org/10.1002/bbpc.19750790405

    Article  Google Scholar 

  19. D.C. Sorensen, SIAM J. Num. Anal. 19, 409 (1982). https://doi.org/10.1137/0719026

    Article  ADS  Google Scholar 

  20. FindMinimum, Wolfram Language and System Documentation, https://reference.wolfram.com/language/ref/FindMinimum.html

  21. Unconstrained Optimization: Step Control, Wolfram Language and System Documentation, https://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationStepControl.html

  22. R.F. Brooks, I. Egry, S. Seetharaman, D. Grant, High Temp. High Press. 33, 631 (2001). https://doi.org/10.1068/htwu323

    Article  Google Scholar 

  23. H. Kokubo, T. Nishi, H. Ohta, H. Yamano, J. Japan Inst. Met. Mater. 82, 400 (2018). https://doi.org/10.2320/jinstmet.JAW201812

    Article  Google Scholar 

  24. T. Nishi, R. Sato, H. Ohta, H. Kokubo, H. Yamano, J. Nucl. Mater. 552, 153002 (2021). https://doi.org/10.1016/j.jnucmat.2021.153002

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Technical development program on a fast reactor international cooperation, etc.” entrusted to the Japan Atomic Energy Agency (JAEA) by the Ministry of Economy, Trade, and Industry (METI). We appreciate the support of Y. Takatsuka and S. Matsumoto of Ibaraki University as well as H. Sato and T. Uno of PASONA Inc and H. Kokubo of Nabtesco Corporation.

Funding

This work was supported by the “Technical development program on a fast reactor international cooperation, etc.” entrusted to the Japan Atomic Energy Agency (JAEA) by the Ministry of Economy, Trade and Industry (METI).

Author information

Authors and Affiliations

Authors

Contributions

TN: Conceptualization, methodology, validation, investigation, data curation, writing original draft, writing review, and editing. RS: Data curation, writing original draft, writing review, and editing. HO: Methodology, formal analysis, investigation. HY: Investigation, writing review, editing, and funding acquisition.

Corresponding author

Correspondence to Tsuyoshi Nishi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, R., Nishi, T., Ohta, H. et al. Viscosity Measurements of Molten Metal Using an Improved Oscillating Crucible Method. Int J Thermophys 43, 85 (2022). https://doi.org/10.1007/s10765-022-03011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03011-2

Keywords

Navigation