Skip to main content
Log in

Mass Diffusion and Thermodiffusion in Multicomponent Fluid Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Fick diffusion and thermodiffusion coefficients of multicomponent mixtures are known to depend on the frame of reference adopted for the mass fluxes. This paper further elucidates a recent proposal on how to define mass- and thermodiffusion coefficients that are independent of the frame of reference. The primary purpose of the paper is to emphasize the simplicity and convenience of using such frame-independent mass- and thermodiffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Platten, M.M. Bou-Ali, P. Costesèque, J.F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Philos. Mag. 83, 1965 (2003)

    Article  ADS  Google Scholar 

  2. A. Köninger, B. Meier, W. Köhler, Philos. Mag. 89, 907 (2009)

    Article  ADS  Google Scholar 

  3. A. Mialdun, V. Yasnou, V. Shevtsova, A. Köninger, W. Köhler, D.A. de Mezquia, M.M. Bou-Ali, J. Chem. Phys. 136, 244512 (2012)

    Article  ADS  Google Scholar 

  4. A. Mialdun, V. Sechenyh, J.C. Legros, J.M. Ortiz de Zárate, V. Shevtsova, J. Chem. Phys. 139, 104903 (2013)

    Article  ADS  Google Scholar 

  5. M. Gebhardt, W. Köhler, Eur. Phys. J. E 38, 24 (2015)

    Article  ADS  Google Scholar 

  6. A. Ahadi, M. Saghir, Eur. Phys. J. E 38, 25 (2015)

    Article  Google Scholar 

  7. Q. Galand, S. Van Vaerenbergh, Eur. Phys. J. E 38, 26 (2015)

    Article  Google Scholar 

  8. A. Mialdun, J.-C. Legros, V. Yasnou, V. Sechenyh, V. Shevtsova, Eur. Phys. J. E 38, 27 (2015)

    Article  Google Scholar 

  9. M. Larrañaga, M.M. Bou-Ali, D.A. de Mezquia, D.A.S. Rees, J.A. Madariaga, C. Santamaría, J.K. Platten, Eur. Phys. J. E 38, 28 (2015)

    Article  Google Scholar 

  10. O.A. Khlybov, I.I. Ryzhkov, T.P. Lyubimova, Eur. Phys. J. E 38, 29 (2015)

    Article  Google Scholar 

  11. M.M. Bou-Ali, A. Ahadi, D.A. de Mezquia, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larrañaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Vaerenbergh, Eur. Phys. J. E 38, 30 (2015)

    Article  Google Scholar 

  12. T. Triller, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, J.M. Ezquerro, Q. Galand, J. Gavaldà, E. Lapeira, A. Leverón-Simavilla, T. Lyubimova, A. Mialdun, J.M. Ortiz de Zárate, J. Rodríguez, X. Ruiz, I.I. Ryzhkov, V. Shevtsova, S. Van Vaerenbergh, W. Köhler, Microgravity Sci. Technol. 30, 295 (2018)

    Article  ADS  Google Scholar 

  13. A. Mialdun, H. Bataller, M.M. Bou-Ali, M. Braibanti, F. Croccolo, A. Errarte, J.M. Ezquerro, J.J. Fernández, Y. Gaponenko, L. García-Fernández, J. Rodríguez, V. Shevtsova, Eur. Phys. J. E 42, 87 (2019)

    Article  Google Scholar 

  14. M. Schraml, T. Trillert, H. Sommermann, W. Köhler, Acta Astronaut. 160, 251 (2019)

    Article  ADS  Google Scholar 

  15. A. Mialdun, M.M. Bou-Ali, M. Braibanti, F. Croccolo, A. Errarte, J.M. Ezquerro, J.J. Fernández, L. García-Fernández, Q. Galand, Y. Gaponenko, F. Gavaldá, W. Köhler, T. Lyubimova, J.M.O. de Zárate, J. Rodríguez, X. Ruiz, I.I. Ryzhkov, M. Schraml, V. Shevtsova, S. Van Vaerenbergh, V. Yasnou, H. Bataller, Acta Astronaut. 176, 204 (2020)

    Article  ADS  Google Scholar 

  16. F. Croccolo, F. Scheffold, H. Bataller, C. R. Mec. 341, 378 (2013)

    Article  ADS  Google Scholar 

  17. F. Croccolo, H. Bataller, F. Sheffold, J. Chem. Phys. 137, 234202 (2012); ibid. 141, 219902 (2014).

  18. C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 107 (2014)

    Article  Google Scholar 

  19. W. Wu, J.H. Jander, M.H. Rausch, A.P. Fröbas, C. Giraudet, J. Chem. Phys. 153, 144201 (2020)

    Article  ADS  Google Scholar 

  20. D. Zapf, W. Köhler, J. Chem. Phys. 153, 224902 (2020)

    Article  ADS  Google Scholar 

  21. A.T. Ndjaka, L. García-Fernández, D.E. Bouyou Bouyou, A. Lassin, M. Azaroual, F. Croccolo, H. Bataller, Eur. Phys. J. E 44, 1–12 (2021)

    Article  Google Scholar 

  22. J.M. Ortiz de Zárate, J.L. Hita, J.V. Sengers, C. R. Mec. 341, 399 (2013)

    Article  ADS  Google Scholar 

  23. J.M. Ortiz de Zárate, C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 77 (2014)

    Article  Google Scholar 

  24. P.M. Pancorbo, J.M. Ortiz de Zárate, H. Bataller, F. Croiccolo, Eur. Phys. J. E 40, 22 (2017)

    Article  Google Scholar 

  25. H. Bataller, T. Triller, B. Pur, W. Köhler, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 40, 35 (2017)

    Article  Google Scholar 

  26. L. García-Fernández, P. Fruton, H. Bataller, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 42, 124 (2019)

    Article  Google Scholar 

  27. J.M. Ortiz de Zárate, L. García-Fernández, H. Bataller, F. Croccolo, J. Stat. Phys. 181, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.C. Miller, V. Vitagliano, R. Sartorio, J. Phys. Chem. 90, 1509 (1986)

    Article  Google Scholar 

  29. R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993)

    Google Scholar 

  30. M.M. Bou-Ali, J.K. Platten, J. Non-Equilib. Thermodyn. 30, 385 (2005)

    ADS  Google Scholar 

  31. A. Leahy-Dios, M.M. Bou-Ali, J.K. Platten, A. Firoozabadi, Eur. Phys. J. E, in press

  32. J. Wambui Mutoru, A. Firoozabadi, J. Chem. Thermodyn. 43, 1192 (2011)

    Article  Google Scholar 

  33. J.C. Legros, Y. Gaponenko, A. Mialdun, T. Triller, A. Hammon, C. Bauer, W. Köhler, V. Shevtsova, Phys. Chem. Chem. Phys. 17, 27713 (2015)

    Article  Google Scholar 

  34. V. Shechenyh, J.C. Legros, A. Mialdun, J.M. Ortiz de Zárate, V. Shevtsova, J. Phys. Chem. B 120, 535 (2016)

    Article  Google Scholar 

  35. G. Guevara-Carrion, R. Fingerhut, J. Vrabec, Nat./Sci. Rep. 11, 12319 (2021)

    Google Scholar 

  36. A. Mialdun, M.M. Bou-Ali, V. Shevtsova, Nat./Sci. Rep. 11, 17735 (2021)

    ADS  Google Scholar 

  37. S. Kozlova, A. Mialdun, I. Ryzhkov, T. Janzen, J. Vrabec, V. Shevtsova, Phys. Chem. Chem. Phys. 21, 2140 (2019)

    Article  Google Scholar 

  38. G.D.C. Kuiken, Thermodynamics of Irreversible Processes (Wiley, New York, 1994)

    Google Scholar 

  39. R. Krishna, J.A. Wesselingh, Chem. Eng. Sci. 52, 861 (1997)

    Article  Google Scholar 

  40. S. Kjelstrup, D. Bedeaux, E. Johannessen, J. Gross, Non-Equilibrium Thermodynamics for Engineers, 2nd edn. (World Scientific, Singapore, 2017)

    Book  Google Scholar 

  41. Y. Demirel, Nonequilibrium Thermodynamics (Elsevier, Amsterdam, 2002)

    MATH  Google Scholar 

  42. C. Peters, L. Wolff, T.J.H. Vlugt, A. Bardow, in Non-Equilbrium Thermodynamics with Applications, eds. by D. Bedeaux, S. Kjelstrup, J.V. Sengers, Ch. 5 (Royal Society of Chemistry, Cambridge, 2016).

  43. O.O. Medvedev, A.A. Shapiro, Fluid Phase Equilib. 208, 291 (2003)

    Article  Google Scholar 

  44. A. Bardow, E. Kriesten, M.A. Voda, F. Casanova, B. Blümich, W. Marquardt, Fluid Phase Equilib. 278, 27 (2009)

    Article  Google Scholar 

  45. J.M. Ortiz de Zárate, Eur. Phys. J. E 42, 43 (2019)

    Article  Google Scholar 

  46. J.M. Ortiz de Zárate, J.V. Sengers, Phys. Chem. Chem. Phys. 22, 17597 (2020)

    Article  Google Scholar 

  47. H.J. Merk, Appl. Sci. Res. A 8, 73 (1960)

    Article  MathSciNet  Google Scholar 

  48. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

    MATH  Google Scholar 

  49. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 405 (2009)

    Article  Google Scholar 

  50. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 485 (2009)

    Article  Google Scholar 

  51. G.B. Ray, D.G. Leaist, J. Chem. Eng. Data 55, 1814 (2010)

    Article  Google Scholar 

  52. P. Bianco, M.M. Bou-Ali, J.K. Platten, D.A. de Mezquia, J.A. Madariaga, C. Santamaría, J. Chem. Phys. 132, 114506 (2010)

    Article  ADS  Google Scholar 

  53. M. Gebhardt, W. Köhler, A. Mialdun, V. Yasnou, V. Shevtsova, J. Chem. Phys. 138, 114503 (2013)

    Article  ADS  Google Scholar 

  54. A. Mialdun, V. Shevtsova, J. Chem. Phys. 138, 161102 (2013)

    Article  ADS  Google Scholar 

  55. M. Larrañaga, M.M. Bou-Ali, I. Lizarraga, J.A. Madariaga, C. Santamaría, J. Chem. Phys. 143, 024202 (2015)

    Article  ADS  Google Scholar 

  56. M. Gebhardt, W. Köhler, J. Chem. Phys. 142, 084506 (2015)

    Article  ADS  Google Scholar 

  57. H. Matsuutra, Y. Nagasaka, Rev. Sci. Instrum. 89, 024903 (2018)

    Article  ADS  Google Scholar 

  58. M. Schraml, H. Bataller, C. Bauer, M.M. Bou-Ali, F. Croccolo, E. Lapeira, A. Mialdun, P. Möckel, A.T. Ndjaka, V. Shevtsova, W. Köhler, Eur. Phys. J. E 44, 128 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of José M. Ortiz de Zárate, who has been my close collaborator for twenty years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan V. Sengers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Volume-Average Frame of Reference

Appendix: Volume-Average Frame of Reference

The procedure described above for the formulation of frame-independent mass- and thermodiffusion coefficients can be readily extended to diffusion coefficients obtained when the fluxes are relative to the center of volume velocity:

$${{\varvec{J}}}_{i}^{\text{V}}={c}_{i}\left[{{\varvec{u}}}_{i}-\left({\sum }_{i}{\phi }_{i}{{\varvec{u}}}_{i}\right)\right],$$
(33)

where \({\phi }_{i}= {x}_{i}{\widehat{V}}_{i}/\sum_{j}{x}_{j}{\widehat{V}}_{j}\) is the volume fraction of component \(i\) with \({\widehat{V}}_{i}\) being the partial molar volume of component \(i\). The corresponding elements \({\varPhi }_{ij}\) of the concentration-dependent matrix \(\Phi \) for the frame-independent transformation are [29, 46]

$${\varPhi }_{ij}={x}_{i}{\delta }_{ij}-{\phi }_{j}{x}_{i}.$$
(34)

Equation 16 becomes

$$ {\text{D = }}\Phi ^{{ - 1}} \cdot {\text{ D}}^{{\text{V}}} {\text{ }} \cdot \Phi = {\text{W}}^{{ - 1}} \cdot {\text{D}}^{{\text{w}}} \cdot {\text{W = X}}^{{ - 1}} \cdot {\text{D}}^{{\text{X}}} \cdot {\text{X}}, $$
(35)

where \({\text{D}}^{\text{V}}\) is now the Fick diffusion matrix in the volume-average frame of reference [29]. Then Eqs. 31 and 32 are supplemented with [46]

$$ \left( {\begin{array}{*{20}c} {\user2{J}_{1}^{{\text{V}}} } \\ : \\ {\user2{J}_{{n - 1}}^{{\text{V}}} } \\ \end{array} } \right) = - {\text{ }}\left[ {\Phi \cdot {\text{D}} \cdot \Phi ^{{ - 1}} \cdot \left( {\begin{array}{*{20}c} {\nabla c_{1} } \\ : \\ {\nabla c_{{n - 1}} } \\ \end{array} } \right) + \Phi \cdot \left( {\begin{array}{*{20}c} {D_{{T,1}} } \\ : \\ {D_{{T,n - 1}} } \\ \end{array} } \right){\text{ }}\varvec{\nabla }T} \right]. $$
(36)

While the matrices \({\text{W}}\) and \({\text{X}}\) are determined by the composition of the mixture, the matrix \(\Phi \) requires knowledge of the partial molar volumes, information that may not be so readily available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengers, J.V. Mass Diffusion and Thermodiffusion in Multicomponent Fluid Mixtures. Int J Thermophys 43, 59 (2022). https://doi.org/10.1007/s10765-022-02982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02982-6

Keywords

Navigation