Skip to main content
Log in

A Square Pulse Thermoreflectance Technique for the Measurement of Thermal Properties

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report on a laser-based square pulse thermoreflectance (SPTR) technique for the measurement of thermal properties for a wide range of materials. SPTR adopts the pump-probe thermoreflectance principle to monitor the evolution of local temperature after square pulse excitation. The technique features a compact setup, high spatial resolution, and fast data collection. By comparing the acquired SPTR signals with a continuum heat transfer model, material thermal properties can be obtained. Taking advantage of various spot sizes and modulation frequencies, SPTR can measure both the thermal diffusivity and thermal conductivity of poorly to moderately conductive materials and the thermal conductivity of conductive materials with satisfactory accuracy, with potential to be applied to more conductive materials. The technique was validated on three materials: fused silica, single crystal CaF2 and single crystal nickel (with conductivities ranging from 1 W·m−1·K−1 to 100 W·m−1·K−1) with typical measurement errors of 5 % to 20 %. The leading sources of error have been identified by Monte Carlo simulations, and the primary limitations of SPTR are discussed. The compact, fiberized platform we describe here will allow instruments based on this methodology to be deployed in complex, multi-analytical environments for the type of high-throughput correlative analyses that are key to materials design and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data and code that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014). https://doi.org/10.1063/1.4832615

    Article  ADS  Google Scholar 

  2. M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, D. Hurley, J. Mater. Res. 32, 204 (2016). https://doi.org/10.1557/jmr.2016.421

    Article  ADS  Google Scholar 

  3. R. Spotnitz, J. Franklin, J. Power Sources 113, 81 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3

    Article  ADS  Google Scholar 

  4. W. Liu, Q. Jie, H.S. Kim, Z. Ren, Acta Mater. 87, 357 (2015). https://doi.org/10.1016/j.actamat.2014.12.042

    Article  ADS  Google Scholar 

  5. M. Khandelwal, M.M. Mench, J. Power Sources 161, 1106 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.092

    Article  ADS  Google Scholar 

  6. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, J.-C. Zhao, Nat. Mater. 3, 298 (2004). https://doi.org/10.1038/nmat1114

    Article  ADS  Google Scholar 

  7. D. Hurley, M. Khafizov, S. Shinde, J. Appl. Phys. 109, 083504 (2011). https://doi.org/10.1063/1.3573511

    Article  ADS  Google Scholar 

  8. Z. Hua, J. Spackman, H. Ban, Materialia 5, 100230 (2019). https://doi.org/10.1016/j.mtla.2019.100230

    Article  Google Scholar 

  9. X. Bai, M. Tonks, Y. Zhang, J. Hales, J. Nucl. Mater. 470, 208 (2016). https://doi.org/10.1016/j.jnucmat.2015.12.028

    Article  ADS  Google Scholar 

  10. M. Khafizov, J. Pakarinen, L. He, D.H. Hurley, J. Am. Ceram. Soc 102, 7533 (2019). https://doi.org/10.1111/jace.16616

    Article  Google Scholar 

  11. J.A. Aguiar, A.M. Jokisaari, M. Kerr, R. Allen Roach, Nat. Commun. 11, 2556 (2020). https://doi.org/10.1038/s41467-020-16406-2

    Article  ADS  Google Scholar 

  12. J.J. de Pablo, N.E. Jackson, M.A. Webb, L.-Q. Chen, J.E. Moore, D. Morgan, R. Jacobs, T. Pollock, D.G. Schlom, E.S. Toberer, J. Analytis, I. Dabo, D.M. DeLongchamp, G.A. Fiete, G.M. Grason, G. Hautier, Y. Mo, K. Rajan, E.J. Reed, E. Rodriguez, V. Stevanovic, J. Suntivich, K. Thornton, J.-C. Zhao, npj Comput. Mater. 5, 41 (2019). https://doi.org/10.1038/s41524-019-0173-4

    Article  ADS  Google Scholar 

  13. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, J. Electron. Packag. (2016). https://doi.org/10.1115/1.4034605

    Article  Google Scholar 

  14. W. Capinski, H. Maris, Rev. Sci. Instrum. 67, 2720 (1996). https://doi.org/10.1063/1.1147100

    Article  ADS  Google Scholar 

  15. K. Chen, B. Song, N.K. Ravichandran, Q. Zheng, X. Chen et al., Science 367, 555 (2020). https://doi.org/10.1126/science.aaz6149

    Article  ADS  Google Scholar 

  16. C. Wei, X. Zheng, D. Cahill, J. Zhao, Rev. Sci. Instrum. 84, 071301 (2013). https://doi.org/10.1063/1.4815867

    Article  ADS  Google Scholar 

  17. J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. Ramesh, M.A. Zurbuchen, Nat. Mater. 13, 168 (2014). https://doi.org/10.1038/nmat3826

    Article  ADS  Google Scholar 

  18. F. Hofmann, M.P. Short, C.A. Dennett, MRS Bull. 44, 392 (2019). https://doi.org/10.1557/mrs.2019.104

    Article  ADS  Google Scholar 

  19. S. Middlemas, Z. Hua, V. Chauhan, W.T. Yorgason, R. Schley, A. Khanolkar, M. Khafizov, D. Hurley, J. Nucl. Mater. 528, 151842 (2020). https://doi.org/10.1016/j.jnucmat.2019.151842

    Article  Google Scholar 

  20. D.H. Olson, J.L. Braun, P.E. Hopkins, J. Appl. Phys. 126, 150901 (2019). https://doi.org/10.1063/1.5120310

    Article  ADS  Google Scholar 

  21. A.J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 79, 114902 (2008). https://doi.org/10.1063/1.3006335

    Article  ADS  Google Scholar 

  22. D. Cahill, Rev. Sci. Instrum. 75, 5119 (2004). https://doi.org/10.1063/1.1819431

    Article  ADS  Google Scholar 

  23. J. Feser, J. Liu, D. Cahill, Rev. Sci. Instrum. 85, 104903 (2014). https://doi.org/10.1063/1.4897622

    Article  ADS  Google Scholar 

  24. C. Chiritescu, D. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007). https://doi.org/10.1126/science.1136494

    Article  ADS  Google Scholar 

  25. M. Li, J.S. Kang, Y. Hu, Rev. Sci. Instrum. 89, 084901 (2018). https://doi.org/10.1063/1.5026028

    Article  ADS  Google Scholar 

  26. A.J. Schmidt, R. Cheaito, M. Chiesa, Rev. Sci. Instrum. 80, 094901 (2009). https://doi.org/10.1063/1.3212673

    Article  ADS  Google Scholar 

  27. L. Tang, C. Dames, Int. J. Heat Mass Transf. 164, 120600 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120600

    Article  Google Scholar 

  28. J. Malen, K. Baheti, T. Tong, Y. Zhao, J. Hudgings, A. Majumdar, J. Heat Trans. (2011). https://doi.org/10.1115/1.4003545

    Article  Google Scholar 

  29. D. Hurley, R. Schley, M. Khafizov, B. Wendt, Rev. Sci. Instrum. 86, 123901 (2015). https://doi.org/10.1063/1.4936213

    Article  ADS  Google Scholar 

  30. Y. Wang, D.H. Hurley, E.P. Luther, M.F. Beaux, D.R. Vodnik, R.J. Peterson, B.L. Bennett, I.O. Usov, P. Yuan, X. Wang, M. Khafizov, Carbon 129, 476 (2018). https://doi.org/10.1016/j.carbon.2017.12.041

    Article  Google Scholar 

  31. J. Hartmann, P. Voigt, M. Reichling, J. Appl. Phys. 81, 2966 (1997). https://doi.org/10.1063/1.364329

    Article  ADS  Google Scholar 

  32. D. Fournier, M. Marangolo, C. Fretigny, J. Appl. Phys. 128, 241101 (2020). https://doi.org/10.1063/5.0019025

    Article  ADS  Google Scholar 

  33. J.L. Braun, D.H. Olson, J.T. Gaskins, P.E. Hopkins, Rev. Sci. Instrum. 90, 024905 (2019). https://doi.org/10.1063/1.5056182

    Article  ADS  Google Scholar 

  34. D. Hurley, O. Wright, O. Matsuda, S. Shinde, J. Appl. Phys. 107, 023521 (2010). https://doi.org/10.1063/1.3272827

    Article  ADS  Google Scholar 

  35. C. Cardell, I. Guerra, Trends Anal. Chem 77, 156 (2016). https://doi.org/10.1016/j.trac.2015.12.001

    Article  Google Scholar 

  36. K. Hatori, N. Taketoshi, T. Baba, H. Ohta, Rev. Sci. Instrum. 76, 114901 (2005). https://doi.org/10.1063/1.2130333

    Article  ADS  Google Scholar 

  37. A. Yarai, T. Nakanishi, Rev. Sci. Instrum. 78, 054903 (2007). https://doi.org/10.1063/1.2736414

    Article  ADS  Google Scholar 

  38. Raad, P. E.: Electronics Cooling Magazine (2008)

  39. J. Liu, J. Zhu, M. Tian, X. Gu, A. Schmidt, R. Yang, Rev. Sci. Instrum. 84, 034902 (2013). https://doi.org/10.1063/1.4797479

    Article  ADS  Google Scholar 

  40. A.J. Schmidt, R. Cheaito, M. Chiesa, J. Appl. Phys. 107, 024908 (2010). https://doi.org/10.1063/1.3289907

    Article  ADS  Google Scholar 

  41. G. Langer, J. Hartmann, M. Reichling, Rev. Sci. Instrum. 68, 1510 (1997). https://doi.org/10.1063/1.1147638

    Article  ADS  Google Scholar 

  42. J.R. Rumble (ed.), Handbook of Chemistry and Physics, 99th edn. (CRC Press, Boca Raton, 2018)

    Google Scholar 

  43. P.E. Hopkins, P.M. Norris, R.J. Stevens, J. Heat Trans. (2008). https://doi.org/10.1115/1.2787025

    Article  Google Scholar 

  44. M. Ahadi, M. Andisheh-Tadbir, M. Tam, M. Bahrami, Int. J. Heat Mass Transf. 96, 371 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.037

    Article  Google Scholar 

  45. Z. Hua, H. Ban, D.H. Hurley, Rev. Sci. Instrum. 86, 054901 (2015). https://doi.org/10.1063/1.4919609

    Article  ADS  Google Scholar 

  46. X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, J.C. Zhao, Acta Mater. 55, 5177 (2007). https://doi.org/10.1016/j.actamat.2007.05.037

    Article  ADS  Google Scholar 

  47. D.R. Queen, F. Hellman, Rev. Sci. Instrum. 80, 063901 (2009). https://doi.org/10.1063/1.3142463

    Article  ADS  Google Scholar 

  48. B.C. Gundrum, D.G. Cahill, R.S. Averback, Phys. Rev. B 72, 245426 (2005). https://doi.org/10.1103/PhysRevB.72.245426

    Article  ADS  Google Scholar 

  49. Y.-J. Wu, L. Fang, Y. Xu, npj Comput. Mater. 5, 56 (2019). https://doi.org/10.1038/s41524-019-0193-0

    Article  ADS  Google Scholar 

  50. J. Yang, E. Ziade, A.J. Schmidt, Rev. Sci. Instrum. 87, 014901 (2016). https://doi.org/10.1063/1.4939671

    Article  ADS  Google Scholar 

  51. W. Shen, D. Vaca, S. Kumar, Nanosc. Microsc. Therm. 24, 138 (2020). https://doi.org/10.1080/15567265.2020.1807662

    Article  Google Scholar 

  52. P.R. Gadkari, A.P. Warren, R.M. Todi, R.V. Petrova, K.R. Coffey, J. Vac. Sci. Technol. A 23, 1152 (2005). https://doi.org/10.1116/1.1861943

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Y.W., C.A.D., R.S., D.M., and G.B. acknowledge support from the Nuclear Materials Discovery and Qualification initiative (NMDQi) program under the US Department of Energy, Office of Nuclear Energy under Idaho Operations Office (DE-AC07-05ID14517). Y.W., Z.H, and D.H.H. acknowledge support from the Center for Thermal Energy Transport under Irradiation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Science. V.C. and M.K. acknowledge the finical support from the Nuclear Regulatory Commission Faculty Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhou Wang, Zilong Hua or David H. Hurley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Ideally, a square wave can be expressed by Eq. 1. Each harmonic has an equal phase of zero and a 1/(2n − 1) amplitude. In an actual experiment, however, the signal is processed by various electrical circuits which inevitably introduce distortions. These distortions are most often frequency dependent. To conveniently capture these effects, we use a lumped transfer function to account for the changes to both amplitude and phase.

First, the imperfect square pulse is measured by removing the short-pass filter normally placed in front of the detector to reject any pump light, shutting down the probe laser, and collecting the pump signal reflected by sample surface using the photodetector.

Next, to derive the transfer function, we express the collected non-ideal square wave as

$$x{^{\prime}}\left(t\right)={\sum }_{m=-\infty }^{\infty }{P}_{m}\frac{\text{exp}\left(im\omega t+{i\phi }_{m}\right)}{m},$$
(10)

where m are odd integers. Taking advantage of the relation \(\int \text{sin}\left(mt\right)\text{sin}\left(nt\right)dt={\delta }_{nm}\) (\(\delta\) is Kronecker delta function), we can obtain the following relations

$$\begin{gathered} P_{m,1} = \mathop \int \limits_{0}^{\frac{1}{f}} mx^{\prime}\left( t \right)\cos \left( {m\omega t} \right)dt \hfill \\ P_{m,2} = \mathop \int \limits_{0}^{1/f} mx^{\prime}\left( t \right)\sin \left( {m\omega t} \right)dt, \hfill \\ \end{gathered}$$
(11)

from which the factors \(P_{m}\) and \(\phi_{m}\) can be expressed as

$$\begin{gathered} P_{m} = \sqrt {P_{m,1}^{2} + P_{m,2}^{2} } \hfill \\ \phi_{m} = {\text{atan}}\left( {\frac{{P_{m,2} }}{{P_{m,1} }}} \right). \hfill \\ \end{gathered}$$
(12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chauhan, V., Hua, Z. et al. A Square Pulse Thermoreflectance Technique for the Measurement of Thermal Properties. Int J Thermophys 43, 53 (2022). https://doi.org/10.1007/s10765-021-02949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02949-z

Keywords

Navigation