Skip to main content
Log in

Thermodynamic Properties of 2-Methyl-4-nitro-1,2,3-triazole in Crystalline State

  • TALGAT KHASANSHIN: IN MEMORIAM
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Heat capacities of 2-methyl-4-nitro-1,2,3-triazole (2MeT) between (5 and 370) K have been measured by adiabatic calorimetry, and parameters of its phase transition have been obtained. The standard thermodynamic properties of the 2MeT in the condensed state have been evaluated over the range of (0 to 370) K. The standard thermodynamic functions of formation of 2MeT at 298.15 K were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data and materials support their published claims and comply with field standards.

References

  1. P.F. Pagoria, G.S. Lee, A.R. Mitchell, R.D. Schmidt, Thermochim. Acta. 384, 1–2 (2002). https://doi.org/10.1016/S0040-6031(01)00805-X

    Article  Google Scholar 

  2. Y. Shibamoto, K. Sakano, R. Kimura, T. Nishidai, S. Nishimoto, K. Ono, T. Kagiya, M. Abe, Int. J. Radiat. Oncol. Biol. Phys. 12, 1063–1066 (1986). https://doi.org/10.1016/0360-3016(86)90226-9

    Article  Google Scholar 

  3. Y. Shibamoto, S. Nishimoto, K. Shimokawa, Y. Hisanaga, L. Zhou, J. Wang, K. Sasai, M. Takahashi, M. Abe, T. Kagiya, Int. J. Radiat. Oncol. Biol. Phys. 16, 1045–1048 (1989). https://doi.org/10.1016/0360-3016(89)90912-7

    Article  Google Scholar 

  4. K. Walczak, A. Gondela, J. Suwiński, Eur. J. Med. Chem. 39, 849–853 (2004). https://doi.org/10.1016/j.ejmech.2004.06.014

    Article  Google Scholar 

  5. E. Heinrich, N. Getoff, Radiat. Phys. Chem. 67, 487–492 (2003). https://doi.org/10.1016/S0969-806X(03)00090-2

    Article  ADS  Google Scholar 

  6. L.I. Vereschagin, F.A. Pokatilov, V.N. Kizhnyaev, Chem. Het. Comp. 44, 1 (2008). https://doi.org/10.1007/s10593-008-0017-5

    Article  Google Scholar 

  7. A.V. Blokhin, S.V. Kohut, G.J. Kabo, E.N. Stepurko, Y.U. Paulechka, O.V. Voitkevich, Thermochim. Acta. 565, 221–226 (2013). https://doi.org/10.1016/j.tca.2013.05.011

    Article  Google Scholar 

  8. E.N. Stepurko, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, S.V. Voitekhovich, A.S. Lyakhov, S.V. Kohut, T.E. Kazarovets, Thermochim. Acta. 592, 10–17 (2014). https://doi.org/10.1016/j.tca.2014.07.018

    Article  Google Scholar 

  9. E.N. Stepurko, A.V. Blokhin, S.V. Kohut, G.J. Kabo, Thermochim. Acta. 595, 178534 (2020). https://doi.org/10.1016/j.tca.2020.178534

    Article  Google Scholar 

  10. V.E. Matulis, O.A. Ivashkevich, P.N. Gaponik, P.D. Elkind, G.T. Sukhanov, A.B. Bazyleva, D.H. Zaitsau, J. Mol. Struct. 854, 18–25 (2008). https://doi.org/10.1016/j.theochem.2007.12.009

    Article  Google Scholar 

  11. A.V. Blokhin, Y.U. Paulechka, G.J. Kabo, J. Chem. Eng. Data 51, 1377–1388 (2006). https://doi.org/10.1021/je060094d

    Article  Google Scholar 

  12. G.J. Kabo, A.V. Blokhin, E. Paulechka, G.N. Roganov, M. Frenkel, I.A. Yursha, V. Diky, D. Zaitsau, A. Bazyleva, V.V. Simirsky, L.S. Karpushenkava, V.M. Sevruk, J. Chem. Thermodyn. 131, 225–246 (2019). https://doi.org/10.1016/j.jct.2018.10.025

    Article  Google Scholar 

  13. J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, T. Prohaska, Pure Appl. Chem. 88, 265–291 (2016). https://doi.org/10.1515/pac-2015-0305

    Article  Google Scholar 

  14. J.P. McCullough, D.W. Scott, Experimental Thermodynamics. Calorimetry of Non-Reacting Systems, vol. I (Butterworth, London, 1968)

    Google Scholar 

  15. E. Tiesinga, P.J. Mohr, D.B. Newell, B.N. Taylor, The 2018 CODATA Recommended Values of the Fundamental Physical Constants (Web Version 8.1). in Database developed ed. by J. Baker, M. Douma, and S. Kotochigova, National Institute of Standards and Technology. http://physics.nist.gov/constants, 2020.

Download references

Acknowledgments

This work was supported by State Program of Scientific Investigations «Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry» (Project No. 2.1.1)

Funding

This work was supported by State Program of Scientific Investigations «Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry» (Project No. 2.1.1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AVB, ENS, YNY, and MBC. The first draft of the manuscript was written by ENS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. N. Stepurko.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue in Memory of Professor Talgat Khasanshin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepurko, E.N., Blokhin, A.V., Yurkshtovich, Y.N. et al. Thermodynamic Properties of 2-Methyl-4-nitro-1,2,3-triazole in Crystalline State. Int J Thermophys 43, 26 (2022). https://doi.org/10.1007/s10765-021-02942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02942-6

Keywords

Navigation