Skip to main content
Log in

Two Methods for Determination of Transport Numbers in Ion-Exchange Membranes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Chronopotentiometry and electromotive force methods were used to determine ion transport numbers in two homogeneous and highly selective cation- and anion-exchange membranes. NaCl aqueous solutions of different concentrations, varying from 1  mol·m−3 to 100 mol·m−3 were used to analyze the possible impact of the electrolyte concentration on the results obtained by both methods. Cation transport numbers close to unity for the cation exchange membrane and to zero for the anion-exchange membrane were found for both membrane types with both methods when the NaCl-concentration exceeded 10 mol·m−3. At the lowest concentrations, a systematic deviation from ideal behavior was seen, mainly in the electromotive force method, possibly due to a higher contribution from transport of water. The cation transport number estimated by the electromotive force method was systematically lower than the number obtained from chronopotentiometry, probably due to larger concentration polarization at low electrolyte concentration. We conclude that chronopotentiometry is a relatively rapid and precise technique for ion transport number determination at electrolyte concentrations for which membranes maintain a good selectivity for the measurement conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.G. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962)

    Google Scholar 

  2. T. Luo, S. Abdu, M. Wessling, Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 428 (2018)

    Article  Google Scholar 

  3. H. Strathmann, Ion-Exchange Membrane Separation Processes, Membrane Science and Technology Sciences, vol. 9 (Elsevier, Amsterdam, 2004)

    Google Scholar 

  4. Y. Tanaka, Ion-Exchange Membranes, vol. 12, 2nd edn. (Elsevier Science, Amsterdam, 2015)

    Google Scholar 

  5. A. Zlotorowicz, R.V. Strand, O.S. Burheim, O. Wilhelmsen, S. Kjelstrup, The permselective and water transference number of ion exchange membranes in reverse electrolialysis. J. Membr. Sci. 523, 402 (2017)

    Article  Google Scholar 

  6. N. Lakshminarayanaiah, Transport Phenomena in Membranes (Academic Press, New York, 1969)

    Google Scholar 

  7. G.M. Geise, H.J. Cassady, D.R. Paul, B.E. Logan, M.A. Hickner, Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16, 21673 (2014)

    Article  Google Scholar 

  8. C. Larchet, B. Auclair, V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes. Electrochim. Acta 49, 1711 (2004)

    Article  Google Scholar 

  9. R.K. Nagarale, V.K. Shahi, S.K. Thampy, R. Rangarajan, Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes. React. Funct. Polym. 61, 131 (2004)

    Article  Google Scholar 

  10. R.H. Nagarale, G.S. Gohil, V.K. Shahi, Recent developments of ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 119, 97 (2006)

    Article  Google Scholar 

  11. G.S. Gohil, V.V. Binso, V.K. Shahi, Preparation and characterization of mono-valent in exchange polypyrrole composite ion-exchange membranes. J. Membr. Sci. 280, 210 (2006)

    Article  Google Scholar 

  12. A.A. Mansoor, M. Mustakeen, D. Nedela, Study the transport properties of anion and cation exchange membranes toward various ion using chronopotentiometry. Iran J. Chem. Chem. Eng. 36, 81 (2017)

    Google Scholar 

  13. L. Marder, E.M. Ortega Navarro, V. Pérez-Herranz, A.M. Bernardes, J. Zoppas Ferreira, Evaluation of transition metal transport properties through a cation-exchange membrane by chronopotentiometry. J. Membr. Sci. 284, 267 (2006)

    Article  Google Scholar 

  14. V.K. Shashi, R. Prakash, G. Ramachandraiah, R. Rangaranjan, D. Vasudevan, Solution-membrane equilibrium at metal-deposited cation-exchange membranes: chronopotentiometric characterization of metal-modified membranes. J. Colloid Interface Sci. 216, 179 (1999)

    Article  ADS  Google Scholar 

  15. A.M. Peers, General discussion. Discuss. Faraday Soc. 21, 124 (1956)

    Google Scholar 

  16. V.V. Nikonenko, A.V. Kovalenko, M.K. Urtenov, N.D. Pismenskaya, Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 324, 85 (2014)

    Article  Google Scholar 

  17. V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova, P. Sistat, P. Huguet, G. Pourcely, C. Larchet, Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Colloid Interface Sci. 160, 101 (2010)

    Article  Google Scholar 

  18. E.I. Belova, G.Y. Lopatkova, N.D. Pismenskaya, V.V. Nikonenko, C. Larchet, G. Pourcely, Effect of anion membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110, 13458 (2006)

    Article  Google Scholar 

  19. F. Roghmans, E. Evdochenko, F. Stockmeirer, S. Schenider, A. Smaijili, R. Towari, A. Mikosh, E. Kataray, A. Kühne, A. Walther, A. Mani, M. Wessling, 2D patterned ion-exchange membranes induces electroconvection. Adv. Mater. Interfaces 61, 801309 (2019)

    Google Scholar 

  20. V.I. Zabolotsky, V.V. Nikonenko, N.D. Pismesnskaya, E.V. Laktionoiv, M.K. Urtenov, H. Strathmann, M. Wessling, G.H. Koops, Coupled transport phenomena in overlimiting current electrodialysis. Sep. Purif. Technol. 14, 225 (1998)

    Article  Google Scholar 

  21. Y. Tanaka, Water dissociation reaction generated in an ion exchange membrane. J. Membr. Sci. 350, 347 (2010)

    Article  Google Scholar 

  22. H. Strathmann, Chronopotentiometry for the advanced current-voltage characterization of bipolar membranes. J. Electr. Chem. 502, 152 (2001)

    Article  Google Scholar 

  23. M. Taky, G. Pourcelly, C. Gavach, A. Elmidaoui, Chronopotentiometric response of a cation exchange membrane in contact with chromium (III) solutions. Desalination 105, 219 (1996)

    Article  Google Scholar 

  24. J.H. Choi, S.-H. Moon, Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 191, 225 (2001)

    Article  Google Scholar 

  25. R. Ibañez, D.F. Stamatialis, M. Wessling, Role of membrane surface in concentration polarization at cation exchange membranes. J. Membr. Sci. 239, 119 (2004)

    Article  Google Scholar 

  26. N. Pismenskaia, P. Sissat, P. Huguet, V. Nikonenko, G. Pourcelly, Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. J. Membr. Sci. 228, 65 (2004)

    Article  Google Scholar 

  27. T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application (Royal Society of Chemistry, Cambridge, 2004)

    Google Scholar 

  28. P. Dugoleçki, B. Anet, S.J. Metz, K. Nijmeijer, M. Wessling, Transport limitation in ion exchange membranes at low salt concentration. J. Membr. Sci. 346, 163 (2010)

    Article  Google Scholar 

  29. C. Larchet, S. Nouri, B. Auclair, L. Dammak, V. Nikonenko, Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 139, 45 (2008)

    Article  Google Scholar 

  30. S.A. Mareev, V.S. Nichka, D.Y. Butylskii, M.K. Urtenov, N.D. Pismenskaya, P.Y. Apel, V.V. Nikonenko, Chronopotentiometric response of an electrically heterogeneous permeselective surface: 3D modelling of transition time and experiment. J. Phys. Chem. C 120, 13113 (2016)

    Article  Google Scholar 

  31. Y. Freijanes, V.M. Barragán, S. Muñoz, Chronopotentiometric study of a Nafion membrane in presence of glucose. J. Membr. Sci. 510, 79 (2016)

    Article  Google Scholar 

  32. L. Vobecká, M. Svoboda, J. Benes, T. Bellon, Z. Slouka, Heterogeneity of heterogeneous io-exchange membranes investigated by chronopotentiometry and X-ray computed microtomography. J. Membr. Sci. 559, 127 (2018)

    Article  Google Scholar 

  33. J.J. Krol, M. Wessling, H. Strathmann, Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 162, 155 (1999)

    Article  Google Scholar 

  34. M.C.C. Martí-Calatayud, D.C.B. Buzzi, M. García-Gabaldón, A.M.M. Bernardes, J.A.S. Tenório, V. Pérez-Herranz, Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. J. Membr. Sci. 466, 45 (2014)

    Article  Google Scholar 

  35. L. Marder, E.M. Oretega Navarro, V.O. Pérez-Herranz, A.M. Bernardes, J.Z. Ferreira, Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. J. Membr. Sci. 284, 267 (2006)

    Article  Google Scholar 

  36. T. Scarazzato, Z. Panossian, M. García-Gabaldón, E.M. Ortega, J.A.S. Tenório, V. Pérez-Heransa, D.C.R. Spinosa, Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. J. Membr. Sci. 535, 268 (2017)

    Article  Google Scholar 

  37. P. Ray, V.K. Shahiu, T.V. Pathak, G. Ramachandraiah, Transport phenomenon as a function of counter and co-ions in solution: chronopotentiometric behaviour of anion exchange membrane in different aqueous electrolyte solutions. J. Membr. Sci. 160, 243 (1999)

    Article  Google Scholar 

  38. S. Koter, C. Güler, I. Koter, Chronopotentiometric characterization of electrodialysis module. Archit. Civ. Eng. Environ. 3, 129 (2016)

    Google Scholar 

  39. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E. Ortega, Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. J. Membr. Sci. 379, 449 (2011)

    Article  Google Scholar 

  40. G. Váquez-Rodríguez, L.M. Torres-Rodríguez, A. Montes-Rojas, Synthesis and characterization of commercial cation-exchange membranes modified electrochemically by polypyrrole: effect of synthesis conditions on the transport properties. Desalination 416, 94 (2017)

    Article  Google Scholar 

  41. S.A. Mareev, D.Y. Butylskii, A.V. Kovalenko, D.D. Pismenskaya, L. Dammak, C. Larchet, V.V. Nikonenko, Inclusion of the concentration dependence of the diffusion coefficient in the Sand equation. Russ. J. Electrochem. 52, 996 (2016)

    Article  Google Scholar 

  42. G.J. Janz, Silver-silver halide electrodes, in Reference Electrodes. ed. by D.J.G. Ives, G.J. Janz (Academic Press, London, 1961), p. 179

    Google Scholar 

  43. V.M. Barragán, C. Ruiz-Bauzá, Membrane potential and electrolyte permeation in a cation-exchange membrane. J. Membr. Sci. 154, 261 (1999)

    Article  Google Scholar 

  44. C. Ponce-de-León, C.T.J. Low, G. Kear, F.C. Walsh, Strategies for the determination of the convective-diffusion limiting current from steady linear sweep voltametry. J. Appl. Electrochem. 37, 1261 (2007)

    Article  Google Scholar 

  45. V.M. Barragán, C. Ruizá, Current-voltage curves for ion-exchange membranes: a method for determining the limiting current density. J. Colloid Interface Sci. 205, 365 (1998)

    Article  ADS  Google Scholar 

  46. X.T. Le, T.H. Bui, P. Viel, T. Berthelot, S. Palcin, On the structure-properties relationship of the AMV anion exchange membrane. J. Membr. Sci. 340, 133 (2009)

    Article  Google Scholar 

  47. L. Gurreri, A. Filingeri, M. Ciofalo, A. Cipollina, M. Tedesco, A. Tamburini, G. Micale, Electrodialysis with a profile geometry on current phenomena. Desalination 506, 115001 (2021)

    Article  Google Scholar 

  48. S.A. Mareev, D.Y. Butylskii, N.D. Pismenskaya, V.V. Nikonenko, Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modelling and experiment. J. Membr. Sci. 500, 171 (2016)

    Article  Google Scholar 

  49. D.Y. Butylskii, S.A. Mareev, N.D. Pismenskaya, P.Y. Apel, O.A. Polezhaeva, Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchanges membranes. Electrochim. Acta 273, 289 (2018)

    Article  Google Scholar 

  50. S.A. Mareev, A.V. Nebavskiy, V.S. Nichka, M.K. Urtenov, The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 575, 179 (2019)

    Article  Google Scholar 

  51. J. C. Valença, Overlimiting current properties at ion exchange membranes, PhD Thesis Universiteit Twente, 2017

  52. M. van Soestbergen, P.M. Biesheuvel, M.Z. Bazant, Diffuse-charge effects on the transient response of electrochemical cells. Phys. Rev. E 81, 021503 (2010)

    Article  ADS  Google Scholar 

  53. S.A. Mareev, D.Y. Butylskii, A.V. Kovalenko, A.V. Petukhova, N.D. Pismenskaya, Accounting for the concentration dependence of electrolyte diffusion coefficient in the Sand and the Peers equations. Electrochim. Acta 195, 85 (2016)

    Article  Google Scholar 

  54. S. Koter, Transport number of counterions in ion-exchange membranes. Sep. Purif. Technol. 22, 643 (2001)

    Article  Google Scholar 

  55. D.Y. Butylskii, E.D. Skolotneva, S.A. Mareev, A.D. Gorobchenko, M.K. Urtenov, Estimation of the equations for calculation of chronopotentiometric transition time in membrane systems. Electrochim. Acta 353, 136595 (2020)

    Article  Google Scholar 

  56. V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, On current dependence of the electroosmotic in ion-exchange membranes. J. Membr. Sci. 95, 1 (1994)

    Article  Google Scholar 

  57. V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, Effect of unstirred solution layers on electroomotic permeability of cation-exchange membranes. J. Colloid Interface Sci. 168, 458 (1994)

    Article  ADS  Google Scholar 

  58. R.A. Robinson, R.H. Stokes, Electrolyte Solutions (Academic Press, New York, 1959)

    Google Scholar 

  59. V.M.M. Lobo, Electrolyte Solutions: Literature Data on Thermodynamics and Transport Properties (Coimbra Editora, Coimbra, 1975)

    Google Scholar 

Download references

Acknowledgements

Financial support from Banco de Santander and Universidad Complutense de Madrid under Project PR75/18-21589 is gratefully acknowledged. K.R.K. and S.K. are grateful to Research Council of Norway for project no 262644 PoreLab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Barragán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The electric conductivity of the solutions used in the chronopotentiometry measurements was measured according to the method previously described. From the obtained values, the exact concentration of the prepared solutions can be determined from tabulated values of the electric conductivity \(\sigma\)(S·cm−1) versus concentration c (mol·L−1) for NaCl solutions at 25 ºC [58, 59]. Known the true concentration of each electrolyte solution, the diffusion coefficient D and the transport number of ion sodium in free solution t+ were estimated from tabulated data for the different electrolyte solutions [58, 59]. The results are showed in Table 3.

Table 3 Concentration, electric conductivity, diffusion coefficient and transport number of ion sodium in free solution, for the used electrolytes at 25ºC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Kristiansen, K.R., Kjelstrup, S. et al. Two Methods for Determination of Transport Numbers in Ion-Exchange Membranes. Int J Thermophys 43, 14 (2022). https://doi.org/10.1007/s10765-021-02939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02939-1

Keywords

Navigation