Skip to main content
Log in

Study of Mineral-Based oils with Jatropha curcas L. as Bio-Additive Through Thermal and Kinematic Viscosity Properties

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report on characterization of bio-additive from Jatropha curcas L. oil (JBA) in mineral-based oil (MBO) at different viscosities with 10 % and 20 % ratios blends of JBA. Measurements of kinematic viscosity and mass density were carried out to know the physical changes of MBOs when JBA is added. Also, a thermal characterization of the samples was performed. The thermal conductivity, k, and specific heat, c, were obtained using their relationship with thermal effusivity, e, and thermal diffusivity, α, which were determined by the front and back photopyroelectric techniques, respectively. We show that a correlation between kinematic viscosity and thermal conductivity exists with the percentage of JBA in the blend. The obtained thermal conductivities values were compared with those retrieved using the hot-wire technique showing a good agreement. JBA demonstrated special features to improve the thermal properties and to be able to be used as a viscosity modifier of the MBOs, which could be reflected in a better performance in machinery that uses engine oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified by using an automatized translate stage to vary the distance between the copper foil and the PE sensor. Adapted from [36]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. IPCC, Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, USA, 2014).

  2. REN21, Renewables 2016 Global Status Report (REN21 Secretariat, Paris, 2016).

  3. L.R. Rudnick, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd edn. (CRC Press, Boca Raton, 2013)

    Google Scholar 

  4. A.R. Lansdown, Lubrication and Lubricant Selection: A Practical Guide, 3rd edn. (ASME Press, Champaign, IL, 2004)

    Google Scholar 

  5. S. Wen, P. Huang, Principles of Tribology, 1st edn. (Wiley, Hoboken, NJ, 2012), pp. 177–196

    Google Scholar 

  6. J.C.J. Bart, E. Gucciardi, S. Cavallaro, Biolubricants Science and Technology. Woodhead Publishing Series in Energy: Number 46, 1st edn. (Woodhead Publishing Limited, Cambridge, 2013)

    Google Scholar 

  7. M. Torbacke, A.K. Rudolphi, E. Kassfeldt, Lubricants: Introduction to Properties and Performance, 1st edn. (Wiley, London, 2014)

    Google Scholar 

  8. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  9. N. Carels, M. Sujatha, B. Bahadur, Jatropha, Challenges for a New Energy Crop: Farming, Economics and Biofuel, Illustrate, vol. 1 (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  10. GEXSI LLP, Global Market Study on Jatropha (GEXSI LLP, London, 2008)

    Google Scholar 

  11. FAO, Jatropha: A Smallholder Bioenergy Crop The Potential for Pro-Poor Development, Integrated (FAO, Roma, 2010)

    Google Scholar 

  12. M.C. de Souza, J.F. de Souza Gonçalves, P.C. Gonçalves, S.Y.S. Lutif, J. de Oliveira Gomes, Ind. Crops Prod. 129, 594 (2019)

    Google Scholar 

  13. S. K. Datta, R. K. Pandey, Jatropha, Challenges a New Energy Crop. 2 Genet. Improv. Biotechnol, edited by B. Bahadur, M. Sujatha, and N. Carels (Springer Science & Business Media, New York, 2013), pp. 321–334.

  14. A. Imran, H.H. Masjuki, M.A. Kalam, M. Varman, M. Hasmelidin, K.A.H. AlMahmud, M. Habibullah, Procedia Eng. 68, 178 (2013)

    Google Scholar 

  15. M. Shahabuddin, H.H. Masjuki, M.A. Kalam, Procedia Eng. 56, 597 (2013)

    Google Scholar 

  16. M.F.G. Resul, T.I.M. Ghazi, A. Idris, Ind. Crops Prod. 38, 87 (2012)

    Google Scholar 

  17. D. Dadarlat, H. Visser, D. Bicanic, Meas. Sci. Technol. 6, 1215 (1995)

    ADS  Google Scholar 

  18. D. Dadarlat, C. Neamtu, Meas. Sci. Technol. 17, 3250 (2006)

    ADS  Google Scholar 

  19. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995)

    ADS  Google Scholar 

  20. J.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 700 (2003)

    ADS  Google Scholar 

  21. S. Alvarado, E. Marín, A.G. Juárez, A. Calderón, R. Ivanov, Eur. J. Phys. 33, 897 (2012)

    Google Scholar 

  22. E. Marín, A. Bedoya, S. Alvarado, A. Calderón, R. Ivanov, F. Gordillo-Delgado, J. Phys. D. Appl. Phys. 47, 085501 (2014)

    ADS  Google Scholar 

  23. E.A. Gallardo-Hernández, G. Lara-Hernández, F. Nieto-Camacho, A. Domínguez-Pacheco, A. Cruz-Orea, C. Hernández-Aguilar, E. Contreras-Gallegos, J.J.A. Flores-Cuautle, Int. J. Thermophys. (2017). https://doi.org/10.1007/s10765-017-2185-y

    Article  Google Scholar 

  24. Y. Singh, Friction 3, 320 (2015)

    Google Scholar 

  25. E. González Méndez, J. Martínez Herrera, E. Arguello García, and G. Montes Roa, in Segur. Aliment. Aportaciones Científicas y Agrotecnológicas, edited by J. Martínez Herrera, M. Á. Ramírez Guillermo, and J. Cámara-Córdova, 1st ed. (UJAT: INIFAP, Tabasco, Mexico, 2017), pp. 331–335.

  26. C. Walther, Erdöl Und Teer 7, 382 (1931)

    Google Scholar 

  27. ASTM D341–17, Standard Practice for Viscosity-Temperature Charts for Liquid Petroleum Products (ASTM International, West Conshohocken, PA, 2017).

  28. A.L. Aboul-Seoud, H.M. Moharam, Chem. Eng. J. 72, 253 (1999)

    Google Scholar 

  29. M. Marinelli, F. Murtas, M.G. Mecozzi, U. Zammit, R. Pizzoferrato, F. Scudieri, S. Martellucci, M. Marinelli, Appl. Phys. A 51, 387 (1990)

    ADS  Google Scholar 

  30. P.C. Menon, R.N. Rajesh, C. Glorieux, Rev. Sci. Instrum. 80, 054904 (2009)

    ADS  Google Scholar 

  31. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)

    ADS  Google Scholar 

  32. A. Calderón, R.A. Muñoz Hernández, S.A. Tomas, A. Cruz-Orea, F. Sánchez Sinencio, J. Appl. Phys. 84, 6327 (1998)

    ADS  Google Scholar 

  33. J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998)

    ADS  Google Scholar 

  34. J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gómez, Ferroelectrics 386, 36 (2009)

    Google Scholar 

  35. J.A. Balderas-Lopez, D. Acosta-Avalos, J.J. Alvarado, O. Zelaya-Angel, F. Sanchez-Sinencio, C. Falcony, A. Cruz-Orea, H. Vargas, Meas. Sci. Technol. 6, 1163 (1995)

    ADS  Google Scholar 

  36. G. Lara-Hernandez, J.C. Benavides-Parra, A. Cruz-Orea, E. Contreras-Gallegos, C. Hernández-Aguilar, A.J. de Jesus Flores Cuautle, Superf. y Vacío 31, 6 (2018)

    Google Scholar 

  37. A. Mandelis and A. Matvienko, in Pyroelectric Mater. Sensors, edited by D. Remiens (Research Signpost, Kerala (India), 2007), pp. 61–97.

  38. M. Chirtoc, D. Dadarlat, D. Bicanic, J.S. Antoniow, M. Egée, Progress in Photothermal and Photoacoustic Science and Technology (SPIE, Bellingham, Washington, 1997)

    Google Scholar 

  39. J.A.P. Lima, E. Marin, M.G. daSilva, M.S. Sthel, S.L. Cardoso, H. Vargas, L.C.M. Miranda, Rev. Sci. Instrum. 72, 1580 (2001)

    ADS  Google Scholar 

  40. B.B. Tepepa, E. Marín, E. San Martin-Martinez, A. Cruz-Orea, Int. J. Thermophys. 30, 1591 (2009)

    ADS  Google Scholar 

  41. J.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, J. García, Rev. Sci. Instrum. 71, 2933 (2000)

    ADS  Google Scholar 

  42. J.N. Fox, N.W. Gaggini, R. Wangsani, Am. J. Phys. 55, 272 (1987)

    ADS  Google Scholar 

  43. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, UK, 1959)

    MATH  Google Scholar 

  44. W. Holweger, in Tribol. Adv. (InTech, Singapore, 2013) pp. 3–53.

  45. J. C. J. Bart, E. Gucciardi, S. Cavallaro, in Biolubricants Sci. Technol., 1st ed. (Woodhead Publishing Limited, Cambridge, UK, 2013), pp. 24–67.

  46. S.N. Sahasrabudhe, V. Rodriguez-Martinez, M. O’Meara, B.E. Farkas, Int. J. Food Prop. 20, 1965 (2017)

    Google Scholar 

  47. ASTM D2270–10, Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C and 100 °C (ASTM International, West Conshohocken, PA, 2016).

  48. M.C. Menkiti, O. Ocheje, C.M. Agu, Int. J. Ind. Chem. 8, 133 (2017)

    Google Scholar 

  49. F.K. Forson, E.K. Oduro, E. Hammond-Donkoh, Renew. Energy 29, 1135 (2004)

    Google Scholar 

  50. L. F. Ramírez-Verduzco, J. E. Rodríguez-Rodríguez, A. del R. Jaramillo-Jacob, Fuel 91, 102 (2012).

  51. L.M. Cervantes-Espinosa, F.D.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J.G. Mendoza-Alvarez, J.P. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012)

    ADS  Google Scholar 

  52. D. Dadarlat, M.N. Pop, Int. J. Therm. Sci. 56, 19 (2012)

    Google Scholar 

  53. G. Stachowiak and A. W. Batchelor, in Eng. Tribol., 4th ed. (Butterworth-Heinemann, Oxford, UK, 2013), pp. 11–50.

  54. D. Dadarlat, J. Therm. Anal. Calorim. 110, 27 (2012)

    Google Scholar 

  55. W.C. Silva, A.M. Rocha, M.P.P. Castro, M.S. Sthel, H. Vargas, G.F. David, V.H. Perez, Fuel 130, 105 (2014)

    Google Scholar 

  56. A.O. Guimarães, F.A.L. Machado, E.C. da Silva, A.M. Mansanares, Thermochim. Acta 527, 125 (2012)

    Google Scholar 

  57. M. Ventura, W.B. Deus, J.R. Silva, L.H.C. Andrade, T. Catunda, S.M. Lima, Fuel 212, 309 (2018)

    Google Scholar 

  58. M.P.P. Castro, A.A. Andrade, R.W.A. Franco, P.C.M.L. Miranda, M. Sthel, H. Vargas, R. Constantino, M.L. Baesso, Chem. Phys. Lett. 411, 18 (2005)

    ADS  Google Scholar 

  59. M. Torbacke, A. K. Rudolphi, and E. Kassfeldt, in Lubr. Introd. to Prop. Perform., 1st ed. (John Wiley & Sons, UK, 2014), pp. 93–112.

  60. Y. Bertrand and L. C. Hoang, in 7th Intemational Conf. Prop. Appl. Dielectr. Mater. (IEEE, Nagoya, 2003), pp. 491–494.

  61. Z. Nadolny, G. Dombek, and P. Przybylek, in Conf. Electr. Insul. Dielectr. Phenom. (IEEE, 2016), pp. 857–860.

  62. R. Ravotti, J. Worlitschek, C.R. Pulham, A. Stamatiou, Molecules 25, 5572 (2020)

    Google Scholar 

  63. J.F. Hoffmann, J.F. Henry, G. Vaitilingom, R. Olivès, M. Chirtoc, D. Caron, X. Py, Int. J. Therm. Sci. 107, 105 (2016)

    Google Scholar 

  64. M. K. Ustra, S. R. F. J., M. Ansolin, M. Balen, K. Cantelli, I. P. Alkimim, M. A. Mazutti, F. A. P. Voll, V. F. Cabral, L. Cardozo-Filho, M. L. Corazza, and J. V. Olivei, J. Chem. Thermodyn. 58, 460 (2013).

  65. L. Huang, L.S. Liu, J. Food Eng. 95, 179 (2009)

    Google Scholar 

  66. E. Contreras-Gallegos, F.A. Domínguez-Pacheco, C. Hernández-Aguilar, J.A. Salazar-Montoya, E.G. Ramos-Ramírez, A. Cruz-Orea, J. Therm. Anal. Calorim. 128, 523 (2017)

    Google Scholar 

  67. A. Salazar, Eur. J. Phys. 24, 351 (2003)

    Google Scholar 

  68. S. Wrenick, P. Sutor, H. Pangilinan, and E. E. Schwarz, in World Tribol. Congr. III (ASME Press, Washington D.C., 2005), pp. 1–2.

  69. G. Corsico, L. Mattei, A. Roselli, and C. Gommellini, in Synth. Lubr. High-Performance Funct. Fluids, Revise Expand., edited by L. R. Rudnick and R. L. Shubkin, 2nd ed. (CRC Press Taylor & Francis Group, 1999), pp. 53–62.

Download references

Acknowledgements

This work was supported by research Grants SIP-IPN (20181764 and 20196720) and CONACyT (2015-02-1042, 264093, 2016-01-2482, 241330). The support of COFAA-IPN by the SIBE and BEIFI programs also acknowledged. E. Contreras-Gallegos thanks the financial support from CONACYT through a postdoctoral grant. The author A. Bedoya gratefully acknowledges the support from programa de becas posdoctorales 2020 at UNAM-DGAPA. We also thank Ing. Esther Ayala, for their technical support at the Physics Department, CINVESTAV-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Contreras-Gallegos.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Gallegos, E., Domínguez-Pacheco, F.A., Hernández-Aguilar, C. et al. Study of Mineral-Based oils with Jatropha curcas L. as Bio-Additive Through Thermal and Kinematic Viscosity Properties. Int J Thermophys 43, 4 (2022). https://doi.org/10.1007/s10765-021-02932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02932-8

Keywords

Navigation