Skip to main content
Log in

Uncovering the Structural Defect Effect on Thermal Transport in Carbon Fiber Mat by Thermal Reffusivity Dependence on Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Low-cost carbon fiber based on eco-friendly precursors is very sought. Although much work focuses on the manufacturing process and mechanical properties improvement of lignin-based carbon fiber, the thermal and electrical properties are seldom investigated. This work reports on systematic investigation about the thermal and electrical properties of lignin/PAN-based carbon fiber mat (CFM). The carbon fiber mat is produced by an industrially available hydrolytic lignin. At room temperature, the thermal conductivity of CFM is determined to be 0.10–0.32 W·m−1·K, indicating that the CFM is a promising candidate for thermal insulation. Furthermore, the structural defect effect on thermal and electrical properties is intensively studied. It is found that the electrical properties of five samples are parallel to each other as temperature is higher than 140 K, which directly indicates the defect effect on electrical transport. For the thermal transport, a new parameter: thermal reffusivity (inverse to thermal diffusivity), is defined which is analogously to the electrical resistivity. The thermal reffusivity theory analyzes the structural defect level quantitatively. The thermal reffusivity theory will guide to tailor the grain size and thermal properties of fabricated materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Naito, Y. Tanaka, J.M. Yang, Y. Kayawa, Carbon 46, 189 (2008)

    Article  Google Scholar 

  2. Y.J. Xu, Y. Liu, S. Chen, Y. Ni, BioResources 15, 7234 (2020)

    Article  Google Scholar 

  3. F. Wei, S. Yang, X.L. Wang, T.Q. Yuan, R.C. Sun, Green Chem. 19, 1794 (2017)

    Article  Google Scholar 

  4. H.C. Liu, A.T. Chien, B.A. Newcomb, Y.D. Liu, S. Kumar, ACS Sustain. Chem. Eng. 3, 1943 (2015)

    Article  Google Scholar 

  5. S. Nunna, P. Blanchard, D. Buckmaster, S. Davis, M. Naebe, Heliyon 5, 02698 (2019)

    Article  Google Scholar 

  6. A. Duval, M. Lawoko, React. Funct. Polym. 85, 78 (2014)

    Article  Google Scholar 

  7. F. Souto, V. Calado, N. Pereira Jr., V. Calado, N. Pereira, Mater. Res. Express 5, 072001 (2018)

    Article  ADS  Google Scholar 

  8. D.A. Baker, T.G. Rials, J. Appl. Polym. Sci. 130, 713 (2013)

    Article  Google Scholar 

  9. M.J. Cho, M.A. Karaaslan, S. Renneckar, F. Ko, J. Mater. Sci. 52, 9602 (2017)

    Article  ADS  Google Scholar 

  10. H. Mainka, L. Hilfert, S. Busse, F. Edelmann, E. Haak, A.S. Herrmann, J. Mater. Res. Technol. 4, 377 (2015)

    Article  Google Scholar 

  11. J. Liu, W. Qu, Y. Xie, B. Zhu, T. Wang, X. Bai, X. Wang, Carbon 121, 35 (2017)

    Article  Google Scholar 

  12. R.D. Wang, H. Zobeiri, H. Lin, W. Qu, X. Bai, C. Deng, X. Wang, Carbon 147, 58 (2019)

    Article  Google Scholar 

  13. R. Ding, H. Wu, M. Thunga, N. Bowler, M.R. Kessler, Carbon 100, 126 (2016)

    Article  Google Scholar 

  14. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  15. W. Cao, B. Zhu, M. Jing, C. Wang, Spectrosc. Spect. Anal. 28, 2885 (2008)

    Google Scholar 

  16. A. Kaniyoor, S. Ramaprabhu, AIP Adv. 2, 032183 (2012)

    Article  ADS  Google Scholar 

  17. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson et al., J. Phys. Chem. B 110, 8535 (2006)

    Article  Google Scholar 

  18. J. Heremans, I. Rahim, M.S. Dresselhaus, Phys. Rev. B 32, 6742 (1985)

    Article  ADS  Google Scholar 

  19. J. Liu, T. Wang, S. Xu, P. Yuan, X. Xu, X. Wang, Nanoscale 8, 10298 (2016)

    Article  ADS  Google Scholar 

  20. J. Guo, X. Wang, J. Appl. Phys. 101, 063537 (2007)

    Article  ADS  Google Scholar 

  21. C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 3, 1–796 (1975)

    Google Scholar 

  22. Y. Xie, S. Xu, Z. Xu, H. Wu, C. Deng, X. Wang, Carbon 98, 381 (2016)

    Article  Google Scholar 

  23. W.M. Haynes, Handbook of Chemistry and Physics (Internet Version), 97th edn. (CRC Press/Taylor & Francis, Boca Raton, 2017)

    Google Scholar 

  24. 曹伟伟, 朱波, 王成国, 材料工程 1, 55 (2009)

  25. A. Lekawa-Raus, J. Patmore, L. Kurzapa, J. Bulmer, K. Koziol, Adv. Funct. Mater. 24, 3661 (2014)

    Article  Google Scholar 

  26. J. Liu, Z. Xu, Z. Cheng, S. Xu, X. Wang, ACS Appl. Mater. Interfaces 7, 27279 (2015)

    Article  Google Scholar 

  27. Z. Xu, X. Wang, H. Xie, Polymer 55, 6373 (2014)

    Article  Google Scholar 

  28. A.F. Cohen, J. Appl. Phys. 29, 870 (1958)

    Article  ADS  Google Scholar 

  29. A.J. Kirkham, B. Yates, J. Phys. C: Solid State Phys. 1, 1162 (1968)

    Article  ADS  Google Scholar 

  30. G.A. Slack, Phys. Rev. 127, 694 (1962)

    Article  ADS  Google Scholar 

  31. C.H. Deng, Y.M. Sun, L.J. Pan, T.Y. Wang, Y.S. Xie, J. Liu, B. Zhu, X. Wang, ACS Nano 10, 9710 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Support of this work by the Natural Science Foundation of Top Talent of SZTU (2019209, to J. L.), Guangdong Basic and Applied Basic Research Foundation (2020A1515110389, to J. L.), Young Taishan Scholars Program of Shandong Province (tsqn201909132, to W. Q.) and Natural Science Foundation of Shandong Province (ZR2020QB195, to W. Q.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Liu or Wangda Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zheng, H., Hu, P. et al. Uncovering the Structural Defect Effect on Thermal Transport in Carbon Fiber Mat by Thermal Reffusivity Dependence on Temperature. Int J Thermophys 42, 128 (2021). https://doi.org/10.1007/s10765-021-02880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02880-3

Keywords

Navigation