Skip to main content

Advertisement

Log in

Enhancement of the mechanical properties of electrospun lignin-based nanofibers by heat treatment

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Unique composite nanofibers were produced by electrospinning solvent-fractionated lignin using a small percentage of polyethylene oxide mixed with nanocrystalline cellulose (NCC) for fiber formation and reinforcement, respectively. The materials were characterized and the mechanical properties analyzed as a function of NCC content and thermal exposure (oxidative stabilization and carbonization). At the electrospinning conditions studied, uniform fibers were produced at all NCC concentrations. FTIR analysis of the samples showed shifts in the hydroxyl stretching regions, suggesting intermolecular interactions between the NCC and lignin. After thermal treatment, the mechanical properties of the materials were greatly enhanced for both the lignin and lignin composite fiber mats. The tensile strength and tensile modulus of the mats more than doubled, while the strain at break slightly increased when the materials were exposed to temperatures of 250 °C in an oxidative environment. The tensile strength, tensile modulus and elongation at break values were found to be similar to that of other glassy bioplastics such as polyhydroxybutyrate providing a path to significantly enhance the mechanical properties of technical lignin. NCC loading did not have a significant impact on the performance of the lignin mat for most conditions. Further carbonization of the mats greatly enhanced the stiffness of the mat up to 8 GPa with the inclusion of NCC at the highest loading level. Overall, this work highlights alternative route for the utilization of technical kraft lignin through simple means of heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Marton J (1966) Lignin structure and reactions. Adv I. doi:10.1021/ba-1966-0059

    Google Scholar 

  2. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235

    Article  Google Scholar 

  3. Katahira R, Mittal A, McKinney K et al (2016) Base-catalyzed depolymerization of biorefinery lignins. ACS Sustain Chem Eng 4:1474–1486

    Article  Google Scholar 

  4. Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal & polymer characteristics of kraft lignin & derivatives. BioResources 8:864–886

    Google Scholar 

  5. Yang S, Zhang Y, Yuan T-Q, Sun R-C (2015) Lignin–phenol–formaldehyde resin adhesives prepared with biorefinery technical lignins. J Appl Polym Sci 132:42493(1–8)

  6. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728

    Article  Google Scholar 

  7. Otani S, Fukuoka Y, Igarashi B, K S (1969) Method for producing carbonized lignin fiber. US Patent 3,461,082

  8. Fukuoka Y (1969) Carbon fiber made for lignin (kayacarbon). Japan Chem Q 63–66

  9. Schreiber M, Vivekanandhan S, Mohanty AK, Misra M (2015) Iodine treatment of lignin–cellulose acetate electrospun fibers: enhancement of green fiber carbonization. ACS Sustain Chem Eng 3:33–41

    Article  Google Scholar 

  10. Hosseinaei O, Harper DP, Bozell JJ, Rials TG (2016) Role of physicochemical structure of organosolv hardwood and herbaceous lignins on carbon fiber performance. ACS Sustain Chem Eng 4:5785–5798

    Article  Google Scholar 

  11. Xia K, Ouyang Q, Chen Y et al (2016) Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 4:159–168

    Article  Google Scholar 

  12. Imel AE, Naskar AK, Dadmun MD (2016) Understanding the impact of poly (ethylene oxide) on the assembly of lignin in solution toward improved carbon fiber production. ACS Appl Mater Interfaces 8:3200–3207

    Article  Google Scholar 

  13. Baker FS (2010) Low cost carbon fiber from renewable resources, EERE, US Dept of Energy Project ID# lm_03_baker

  14. Sun Q, Khunsupat R, Akato K et al (2016) A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem 18:5015–5024

    Article  Google Scholar 

  15. Braun JL, Holtman KM, Kadla JF (2005) Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon N Y 43:385–394

    Article  Google Scholar 

  16. Brodin I, Ernstsson M, Gellerstedt G, Sjöholm E (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung 66:141–147

    Article  Google Scholar 

  17. Zhang W, Sathitsuksanoh N, Simmons B et al (2016) Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis. RSC Adv 6:30234–30246

    Article  Google Scholar 

  18. Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124:227–234

    Article  Google Scholar 

  19. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160

    Article  Google Scholar 

  20. Wu J, Wang N, Zhao Y, Jiang L (2013) Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A 1:7290–7305

    Article  Google Scholar 

  21. Hu S, Zhang S, Pan N, Hsieh Y-L (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112

    Article  Google Scholar 

  22. Lai C, Zhou Z, Zhang L et al (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141

    Article  Google Scholar 

  23. Ago M, Borghei M, Haataja JS, Rojas OJ (2016) Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv 6:85802–85810

    Article  Google Scholar 

  24. Teng N-Y, Dallmeyer I, Kadla JF (2013) Effect of softwood kraft lignin fractionation on the dispersion of multiwalled carbon nanotubes. Ind Eng Chem Res 52:6311–6317

    Article  Google Scholar 

  25. Dallmeyer I, Lin LT, Li Y et al (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299:540–551

    Article  Google Scholar 

  26. Lin L, Li Y, Ko FK (2013) Fabrication and properties of lignin based carbon nanofiber. J Fiber Bioeng Inform 6:335–347

    Google Scholar 

  27. Hu S, Hsieh Y-L (2013) Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J Mater Chem A 1:11279–11288

    Article  Google Scholar 

  28. Duval A, Vilaplana F, Crestini C, Lawoko M (2016) Solvent screening for the fractionation of industrial kraft lignin. Holzforschung 70:11–20

    Google Scholar 

  29. Passoni V, Scarica C, Levi M et al (2016) Fractionation of industrial softwood kraft lignin: solvent selection as a tool for tailored material properties. ACS Sustain Chem Eng 4:2232–2242

    Article  Google Scholar 

  30. Sadeghifar H, Sen S, Patil SV, Argyropoulos DS (2016) Toward carbon fibers from single component kraft lignin systems; optimization of chain extension chemistry. ACS Sustain Chem Eng 4:5230–5237

    Article  Google Scholar 

  31. Qin W, Kadla JF (2011) Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res 50:12548–12555

    Article  Google Scholar 

  32. Ago M, Okajima K, Jakes JE et al (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromol 13:918–926

    Article  Google Scholar 

  33. Ago M, Jakes JE, Johansson L-S et al (2012) Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals. ACS Appl Mater Interfaces 4:6849–6856

    Article  Google Scholar 

  34. Ago M, Jakes J, Rojas O (2013) Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study. ACS Appl Mater Interfaces 5:11768–11776

    Article  Google Scholar 

  35. Noorani S, Simonsen J, Atre S (2007) Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose 14:577–584

    Article  Google Scholar 

  36. Dallmeyer I, Chowdhury S, Kadla JF (2013) Preparation and characterization of kraft lignin-based moisture-responsive films with reversible shape-change capability. Biomacromol 14:2354–2363

    Article  Google Scholar 

  37. Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  Google Scholar 

  38. Dong X, Revol J, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  Google Scholar 

  39. Dong H, Strawhecker KE, Snyder JF et al (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495

    Article  Google Scholar 

  40. Azizi Samir MAS, Alloin F, Sanchez JY et al (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393

    Article  Google Scholar 

  41. Viet D, Beck-Candanedo S, Gray DG (2006) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113

    Article  Google Scholar 

  42. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  Google Scholar 

  43. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625

    Article  Google Scholar 

  44. Park W-I, Kang M, Kim H-S, Jin H-J (2007) Electrospinning of poly (ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249–250:289–294

    Article  Google Scholar 

  45. Macossay J, Marruffo A, Rincon R et al (2007) Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly (methyl methacrylate). Polym Adv Technol 18:180–183

    Article  Google Scholar 

  46. Teng N-Y, Dallmeyer I, Kadla JF (2013) Incorporation of multiwalled carbon nanotubes into electrospun softwood kraft lignin-based fibers. J Wood Chem Technol 33:299–316

    Article  Google Scholar 

  47. Zheng LX, O’Connell MJ, Doorn SK et al (2004) Ultralong single-wall carbon nanotubes. Nat Mater 3:673–676

    Article  Google Scholar 

  48. Zheng L, Sun G, Zhan Z (2010) Tuning array morphology for high-strength carbon-nanotube fibers. Small 6:132–137

    Article  Google Scholar 

  49. Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17:4862–4887

    Article  Google Scholar 

  50. Singh S, Mohanty AK, Sugie T et al (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886

    Article  Google Scholar 

  51. Favier V, Chanzy H, Cavaille J-YY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  Google Scholar 

  52. Ding R, Wu H, Thunga M et al (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon N Y 100:126–136

    Article  Google Scholar 

  53. Wanasekara ND, Santos RPO, Douch C et al (2016) Orientation of cellulose nanocrystals in electrospun polymer fibres. J Mater Sci 51:218–227. doi:10.1007/s10853-015-9409-y

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the NSERC LIGNOWORKS Biomaterials and Chemicals Strategic Research Network. Also, FK and SR received support from the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott Renneckar or Frank Ko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M., Karaaslan, M.A., Renneckar, S. et al. Enhancement of the mechanical properties of electrospun lignin-based nanofibers by heat treatment. J Mater Sci 52, 9602–9614 (2017). https://doi.org/10.1007/s10853-017-1160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1160-0

Keywords

Navigation