Skip to main content
Log in

Measurement and Prediction of the Thermal Conductivity of Fused Quartz in the Range of 5–45 ℃

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A database of the thermal conductivity of fused quartz was developed using the KD2 Pro thermal properties analyzer. The database contains the thermal conductivity data of fused quartz with changes in soil porosity and temperatures ranging from 5 ℃ to 45 ℃. The measured data show that the thermal conductivity increases with increasing temperature under dry conditions. Five empirical models and three theoretical models are used to calculate the thermal conductivity of fused quartz and natural sands. The experimental thermal conductivity data of dry fused quartz were exceptionally well predicted by models from the literature if the effects of temperature change were not considered. An empirical model was modified considering temperature and porosity. The empirical model successfully captures the variations in the thermal conductivity of the fused quartz and natural sands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data, models, and code generated are used during the study appear in the submitted article.

References

  1. J.S. Mccartney, M. Sanchez, I. Tomac, Comput. Geotech. 75, 244–256 (2016)

    Article  Google Scholar 

  2. N. Zhang, H.T. He, In Geo-China, (Geotechnical Special Publication, 2016), pp. 9–16

  3. Y. Xiao, H. Liu, B. Nan, J.S. McCartney, J. Geotech. Geoenviron. 144, 06018010 (2018)

    Article  Google Scholar 

  4. Y. Dong, J.S. Mccartney, N. Lu, Geotech. Geol. Eng. 33, 207–221 (2015)

    Article  Google Scholar 

  5. N. Zhang, Z. Wang, Int. J. Therm. Sci. 117, 172–183 (2017)

    Article  Google Scholar 

  6. M. Iskander, R.J. Bathurst, M. Omidvar, Geotech. Test. J. 38, 393–401 (2015)

    Article  Google Scholar 

  7. Z. Wang, C. Li, X.M. Ding, J. Mt. Sci.-Engl. 373, 31–43 (2019)

    Google Scholar 

  8. J. Wang, X. Liu, S. Liu, Y. Zhu, W. Pan, J. Zhou, Acta Geotech. 55, 1533–1551 (2018)

    Article  Google Scholar 

  9. E.D. Guzman, M. Alfaro, Procedia Eng. 143, 363–370 (2016)

    Article  Google Scholar 

  10. J.A. Black, A. Tatari, Geotech. Test. J. 38, 752–764 (2015)

    Google Scholar 

  11. G.A. Siemens, K.G. Mumford, D. Kucharczuk, Geotech. Test. J. 38, 20140218 (2015)

    Article  Google Scholar 

  12. O. Johansen, PhD Thesis (University of Trondheim, Trondheim, 1975)

    Google Scholar 

  13. P.V. Balland, J. Environ. Eng. & Sci. 4, 549–558 (2005)

    Article  Google Scholar 

  14. J.C. Té, J.M. Konrad, Can. Geotech. J. 2005, 443–458 (2015)

    Google Scholar 

  15. S. Lu, T. Ren, Y. Gong, R. Horton, Soil Sci. Soc. Am. J. 71, 8–14 (2007)

    Article  ADS  Google Scholar 

  16. H. He, Z. Ying, M.F. Dyck, B. Si, J. Wang, Acta Geotech. 12, 1–20 (2017)

    Article  Google Scholar 

  17. W. Woodside, J.H. Messmer, J. Appl. Phys. 32, 1688–1699 (1961)

    Article  ADS  Google Scholar 

  18. D.A. de Vries, in Physics of the Plant Environment. ed. by W.R. Wijik (North Holland Publishers, Amsterdam, 1963), pp. 210–235

    Google Scholar 

  19. F. Tong, L. Jing, R.W. Zimmerman, Int. J. Rock Mech. Min. 46, 1358–1369 (2009)

    Article  Google Scholar 

  20. R.V. Herzen, A.E. Maxwell, J. Geophys. Res. 64, 1557–1563 (1959)

    Article  ADS  Google Scholar 

  21. X.C. Shan, Heat Mass Transfer. 44, 1241–1246 (2008)

    Article  ADS  Google Scholar 

  22. R.S. Ladd, Geotech. Test. J. 1, 1 (1978)

  23. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949–968 (2009)

    Article  ADS  Google Scholar 

  24. C. Clauser, E. Huenges, Am. Geophys. Union Ref. Shelf 3, 105 (1995)

    Google Scholar 

  25. H. Yan, H. He, M. Dyck, H. Jin, J. Lv, Geoderma 353, 227–242 (2019)

    Article  ADS  Google Scholar 

  26. J.M. Markle, R.A. Schincariol, J.H. Sass, J.W. Molson, Soil Sci. Soc. Am. J. 70, 1281–1294 (2006)

    Article  ADS  Google Scholar 

  27. G. Kong, H. Li, Q. Yang, Y. Meng, X. Xu, Soil Dyn. Earthq. Eng. 108, 13–17 (2018)

    Article  Google Scholar 

  28. A. Sugawara, Physica 41, 515–520 (1969)

    Article  ADS  Google Scholar 

  29. H. Kanamori, H. Mizutani, N. Fujii, Earth Planets Space. 17, 43–53 (1969)

    Google Scholar 

  30. K. Kadoya, N. Matsunaga, A. Nagashima, J. Phys. Chem. Ref. Data. 14, 947–970 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51922037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qiang Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.R., Kong, G.Q., Chen, Y.H. et al. Measurement and Prediction of the Thermal Conductivity of Fused Quartz in the Range of 5–45 ℃. Int J Thermophys 42, 122 (2021). https://doi.org/10.1007/s10765-021-02873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02873-2

Keywords

Navigation