Skip to main content
Log in

Investigation of Electronic and Thermoelectric Properties of Bulk and [001] Thin Film Structures of Half-Heusler Compound TiNiSn: A DFT Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The electronic and thermoelectric properties of bulk and [001] surfaces of half-Heusler compound TiNiSn are investigated consistently by combining the first principle electronic structure calculations and BOLTZRAP transport theory. It is found that semi-metallic behavior in the Fermi level compared with the bulk state of a compound is declined and just at Ti-Sn termination, a gap near the Fermi surface exists. Our calculations have indicated that Ti-Sn termination has a high density near the Fermi surface which is mostly due to the d orbitals of Ni atoms. Since the power factor and figure of merit depend on electrical conductivity, the decisive factor in determining the thermoelectric performance of materials is their thermal conductivity which, according to the calculations we performed, in Ti-Sn termination, with increasing temperature, the lattice thermal conductivity is decreased logarithmically. So we can conclude thin films can be better thermoelectric materials in high temperatures rather than bulk phases from the same compound. The most amount of figure of merit, which we could obtain at about 1000 K is 0.76 and 0.72 for Ti-Sn termination and bulk phase, respectively. Phase diagram calculations were performed for [001] surfaces of TiNiSn compound and stability of all terminations was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Shi et al., Phys. Rev. B 95, 195207 (2017)

    Article  ADS  Google Scholar 

  2. M.G. Kanatzidis et al., Angew. Chem. Int. Ed 48, 8616–8639 (2009)

    Article  Google Scholar 

  3. R.W. Keyes, Phys. Rev. 115, 115–564 (1959)

    Article  Google Scholar 

  4. Xu. Bin et al., J. Solid State Chem. 192, 351–355 (2012)

    Article  ADS  Google Scholar 

  5. N. Salimi et al., Mater. Res. Express 6, 086414 (2019)

    Article  ADS  Google Scholar 

  6. C. Fu et al., Nat. Commun. 6, 8144 (2015)

    Article  ADS  Google Scholar 

  7. L.D. Zhao et al., Science 351, 141 (2016)

    Article  ADS  Google Scholar 

  8. G. Fiedler et al., Phys. Rev. B 94, 075203 (2016)

    Article  ADS  Google Scholar 

  9. S. Chen et al., Adv. Energy. Mater 3, 1210–1214 (2013)

    Article  Google Scholar 

  10. C. Fu et al., Energy Environ. Sci. 8, 216–220 (2015)

    Article  Google Scholar 

  11. S.R. Clup et al., Appl. Phys. Lett. 88, 042106-1-042106–3 (2006)

    ADS  Google Scholar 

  12. C. Yu et al., Acta Mater 57, 2757–2764 (2009)

    Article  ADS  Google Scholar 

  13. G. Li, Q. An, et al, J. Mater. Chem. A (2016)

  14. J. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. P. Blaha et al., J. Magn. Magn. Mater. 310, 1823 (2007)

    Article  ADS  Google Scholar 

  16. S.D. Guo, J. Alloys Compds. 663, 128–133 (2016)

    Article  Google Scholar 

  17. K. Kirievsky et al., Phys. Chem. Phys. 16, 20023 (2014)

    Article  Google Scholar 

  18. L. Xi et al., J. Materiomics 2, 114–130 (2016)

    Article  Google Scholar 

  19. Y.W. Chai, Y. Kimura, Acta Mater. 61, 6684–6697 (2013)

    Article  ADS  Google Scholar 

  20. G. Rogl et al., Acta Mater. 31, 336–348 (2017)

    Article  ADS  Google Scholar 

  21. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  22. K. Kirievsky et al., Phys. Chem. Chem. Phys. 16, 20023–20029 (2014)

    Article  Google Scholar 

  23. V.V. Romaka et al., Solid State Chem. 197, 103–112 (2013)

    Article  ADS  Google Scholar 

  24. G. Fiedler, P. Kratzer, J. Electron. Mater. 45, 1762 (2016)

    Article  ADS  Google Scholar 

  25. C. Colient, Ph. Jund, J.-C. Tedenac, Intermetallics 46, 103–118 (2014)

    Article  Google Scholar 

  26. M. Hichour, D. Rached, R. Khenata, M. Merabet, A.H. Reshak, S. Binomran, R. Ahmed, J. Phys. Chem. Solid 96, 152105 (2012)

    Google Scholar 

  27. H. Shi, D. Parker, M.-H. Du, D.J. Singh, Phys. Rev. Appl. 3, 014004 (2015)

    Article  ADS  Google Scholar 

  28. N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publicatiion, New Yourk, 1958).

    Google Scholar 

  29. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)

    Article  Google Scholar 

  30. M. Zahedifar, P. Kratzer, Phys. Rev. B 97, 035204 (2018)

    Article  ADS  Google Scholar 

  31. Z.A.A.R. Almaghbash et al., Int. J. Thermophys. 42, 5 (2021)

    Article  ADS  Google Scholar 

  32. Y.G. Yu, X. Zhang, A. Zunger, Phys. Rev. B 95, 085201 (2017)

    Article  ADS  Google Scholar 

  33. M. Shahrokhikhorneh, P. Raybaud, T. Le Bahers, J. Mater. Chem. C. (2020). https://doi.org/10.1039/D0TC02066D

    Article  Google Scholar 

  34. A. Page, A. Van der Ven, P.F. Poudeu, C. Uher, J. Mater. Chem. A (2016)

  35. F. Ahmadian, A. Boochani, Physica B 406, 2865–2870 (2011)

    Article  ADS  Google Scholar 

  36. M. Rostami, Surf. Sci. 673, 103–114 (2018)

    Article  ADS  Google Scholar 

  37. A. Boochani et al., J. Mater. Chem. C 7, 13559 (2019)

    Article  Google Scholar 

  38. J. Wei, G. Wang, J. Alloy. Compd. 757, 118–123 (2018)

    Article  Google Scholar 

  39. M. Shahrokhi, ACS Omega. https://doi.org/10.1021/acsomega.9b03845

  40. Y. Yang, Z.-Y. Feng, J.-M. Zhang, Appl. Surf. Sci. 457, 403–410 (2018)

    Article  ADS  Google Scholar 

  41. T. Pandey et al., Phy. Rev. Appl. 9, 034002 (2018)

    Article  ADS  Google Scholar 

  42. K. Kirievsky et al., Intermetallics 98, 154–160 (2018)

    Article  Google Scholar 

  43. M. Kaller et al., J. Alloy Compds. 729, 446–452 (2017)

    Article  Google Scholar 

  44. S.-D. Guo, J. Alloys Compds. 663, 128–133 (2016)

    Article  Google Scholar 

  45. A. Amudhavalli et al., Comput. Condensed Matter 14, 55–56 (2018)

    Article  Google Scholar 

  46. G. Rogl et al., Acta Mater. 107, 178–195 (2016)

    Article  ADS  Google Scholar 

  47. A. Amudhavalli et al., J. Alloys Compds. 708, 1216–1233 (2017)

    Article  Google Scholar 

  48. S. Singh, R. Kumar, J. Alloys Compound. 722, 544–548 (2017)

    Article  Google Scholar 

  49. M. Shahrokhi, Appl. Surf. Sci. 08, 055 (2016)

    Google Scholar 

  50. J.O. Akinlami et al., Comput. Condensed Matter 15, 90–94 (2017)

    Article  Google Scholar 

  51. M. Shahrokhi et al., Comput. Mater. Sci. 143, 103–111 (2018)

    Article  Google Scholar 

  52. S. Parsamehr, A. Boochani, E. Sartipi, M. Amiri, S. Solaymani, S. Naderi, Int. J. Thermophys. 40, 64 (2019)

    Article  Google Scholar 

  53. M. Yaseen et al., J. Market. Res. 11, 2106 (2021)

    Google Scholar 

  54. M. Shahrokhi, Comput. Mater. Sci. 156, 56–66 (2019)

    Article  Google Scholar 

  55. S. Bhattacharya, G. K. H. Madsen, J. Mater. Chem. C (2016)

  56. G. Li, et al, J. Mater. Chem. A (2016)

  57. Vikram, J. Kangsabanik, et al., J. Mater. Chem. A (2017)

  58. R. Shakoury, A. Arman et al., Opt. Quant. Electron. 52, 270 (2020)

    Article  Google Scholar 

  59. T. Fang, et al., Phys. Chem. Chem. Phys. 2017

  60. S. Rezaee, A. Arman, et al., Superlattices Microstruct. 146, 106681(2020)

  61. A. Berche, J.C. Tedenace, P. Jund, Scr. Mater. 139, 122–125 (2017)

    Article  Google Scholar 

  62. R. Shakoury, A. Arman, et al., J. Mater. Sci.: Mater. Electron. https://doi.org/https://doi.org/10.1007/s10854-020-04858-7

  63. Page A, P. F. P.Poudeu, Ctirad Uher, J Materiomics 2(11), 104 (2016)

  64. M. Amiri, H. Akbari, B. Nedaee-shakarab, A. Boochani, A. Aminian, Commun. Theor. Phys. 71(4), 455 (2019)

  65. B. Arghavani Nia, M. Shahrokhi, Chin. J. Phys. 56, 3039 (2018)

    Article  Google Scholar 

  66. V. Popescu, P. Kratzer et al., Phys. Rev. B 96, 054443 (2017)

    Article  ADS  Google Scholar 

  67. M. A. Behbahani, et al, Journal of Physics and Chemistry of So

Download references

Acknowledgements

The authors would like to acknowledge the helpful collaboration and financial support from the Physics department of Science faculty of Science and Research Branch of Islamic Azad University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boochani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, N., Boochani, A., Elahi, S.M. et al. Investigation of Electronic and Thermoelectric Properties of Bulk and [001] Thin Film Structures of Half-Heusler Compound TiNiSn: A DFT Study. Int J Thermophys 42, 77 (2021). https://doi.org/10.1007/s10765-021-02830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02830-z

Keywords

Navigation