Skip to main content

Advertisement

Log in

Thermophysical Properties and Experimental and Modeling Density of Alkanol + Alkane Mixtures Using Neural Networks Developed with Differential Evolution Algorithm

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Densities of pure 1-heptanol, 1-decanol, n-heptane, n-octane, n-nonane, n-decane, and their binary liquid mixtures were measured over the entire range of composition at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15) K and at atmospheric pressure (0.1 MPa). The experimental data were used to determine several thermophysical properties including, the excess molar volume (\( V_{m}^{E} \)) and coefficient of thermal expansion (\( \alpha \)). These excess properties were used to analyze the inter–intra molecular interactions in the liquid mixtures. In addition, the densities of the considered mixtures were modelled using a combination of differential evolution algorithm and artificial neural networks. The proposed methodology determined good models that were able to efficiently predict the density with an average absolute relative error lower than 0.2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Randová, L. Bartovská, J. Mol. Liq. 242, 767 (2017)

    Article  Google Scholar 

  2. A. Estrada-Baltazar, M.G. Bravo-Sanchez, G.A. Iglesias-Silva, J.F.J. Alvarado, E.O. Castrejon-Gonzalez, M. Ramos-Estrada, Chin. J. Chem. Eng. 23, 559 (2015)

    Article  Google Scholar 

  3. A.A. Abdussalam, G.R. Ivaniš, I.R. Radović, M.L. Kijevčanin, J. Chem. Thermodyn. 100, 89 (2016)

    Article  Google Scholar 

  4. J.G. Baragi, S. Maganur, V. Malode, S.J. Baragi, J. Mol. Liq. 178, 175 (2013)

    Article  Google Scholar 

  5. M.M. Piñeiro, J.G. Beatriz, B.E. de Cominges, J. Vijande, J.L. Valencia, J.L. Legido, Fluid Phase Equilib. 245, 32 (2006)

    Article  Google Scholar 

  6. F.E.M. Alaoui, E.A. Montero, G. Qiu, F. Aguilar, J. Wu, J. Chem. Thermodyn. 65, 174 (2013)

    Article  Google Scholar 

  7. M. El-Hefnawy, R. Tanaka, J. Chem. Eng. Data 50, 1651 (2005)

    Article  Google Scholar 

  8. A.J. Treszczanowicz, T.S. Pawłowski, T. Treszczanowicz, Fluid Phase Equilib. 295, 155 (2010)

    Article  Google Scholar 

  9. N.B. Zhao, X.Y. Wen, J.L. Yang, S.Y. Li, Z.T. Wang, Powder Technol. 281, 173 (2015)

    Article  ADS  Google Scholar 

  10. C. Indolean, A. Măicăneanu, V.M. Cristea, Can. J. Chem. Eng. 95, 615 (2017)

    Article  Google Scholar 

  11. I. Bleotu, E.N. Dragoi, M. Mureşeanu, S.-A. Dorneanu, Environ. Prog. Sustain. Energy. 37, 605 (2018)

    Article  Google Scholar 

  12. E.N. Dragoi, S. Curteanu, D. Fissore, Drying Technol. 31, 72 (2013)

    Article  Google Scholar 

  13. E.N. Dragoi, S. Curteanu, D. Cascaval, A.I. Galaction, Environ. Eng. Manag. J. 14, 533 (2015)

    Article  Google Scholar 

  14. E.-N. Dragoi, S. Curteanu, D. Cascaval, A.-I. Galaction, Chem. Eng. Commun. 203, 1600 (2016)

    Article  Google Scholar 

  15. M. Puig-Arnavat, Artificial neural networks for thermochemical conversion of biomass, in Recent advances in thermo-chemical conversion of biomass, ed. by A.P. Sukumaran (Elsevier, Boston, 2015), pp. 133–156. https://doi.org/10.1016/B978-0-444-63289-0.00005-3

    Chapter  Google Scholar 

  16. J.K. Chong, Memet. Comput. 8, 147 (2016)

    Article  Google Scholar 

  17. V.A. Tatsis, K. E. Parsopoulos., In Proceedings of the 9th Hellenic Conference on Artificial Intelligence (2015)

  18. W. Du, S.Y.S. Leung, C.K. Kwong, Neurocomputing. 151, 342 (2015)

    Article  Google Scholar 

  19. I. Fister, P.N. Suganthan, I. Fister Jr., S.M. Kamal, F.M. Al-Marzouki, M. Perc, D. Strnad, Nonlinear Dyn. 84, 895 (2016)

    Article  Google Scholar 

  20. L.M. Rere, M.I. Fanany, A.M. Arymurthy, Comput. Intel Neurosci. 1, 1 (2016)

    Article  Google Scholar 

  21. G.P. Dubey, R. Kumar, J. Chem. Thermodyn. 71, 27 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Pirdashti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirdashti, M., Movagharnejad, K., Akbarpour, P. et al. Thermophysical Properties and Experimental and Modeling Density of Alkanol + Alkane Mixtures Using Neural Networks Developed with Differential Evolution Algorithm. Int J Thermophys 41, 35 (2020). https://doi.org/10.1007/s10765-020-2609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-2609-y

Keywords

Navigation