Skip to main content
Log in

Evaluation of Structural and Thermal Properties of Ce1-yGdyO2-x Solid Solution

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present study, the systematic evaluation of thermal properties was performed for CeO2–Gd2O3 (Gd2O3 = 0–15 wt%) samples. Gd2O3 doping into CeO2 reduced the grain size of CeO2–Gd2O3 solid solution and caused the expansion of the lattice parameter. The thermal conductivity of CeO2–Gd2O3 solid solutions decreased with increasing Gd2O3 content and decreased with temperature up to nearly 900 K, though the decreasing rates became smaller at a higher temperature. The values of the thermal conductivity were mostly attributed to phonon mean free path which decreased due to the Umklapp processes at high temperatures and reduced by phonon scattering due to Gd dopants and oxygen vacancies at low temperatures. The phonon scattering caused by grain boundaries, and chemical impurities can be neglected, and the isotope effect is considered to be small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Goldstein, A.A. Strasser, Nucl. Technol. 60, 352 (1983)

    Article  Google Scholar 

  2. M.S. Yahya, H. Yu, Y. Kim, J. Nucl. Sci. Technol. 53, 1048 (2016)

    Article  Google Scholar 

  3. A.A. Galahom, Nucl. Energy. Technol. 4, 287 (2018)

    Article  Google Scholar 

  4. V. Barchevtsev, V. Artisyuk, H. Ninokata, J. Nucl. Sci. Technol. 39, 506 (2002)

    Article  Google Scholar 

  5. Rouf, Z. Su’ud. (2016) https://doi.org/10.17485/ijst/2016/v9i28/97797

  6. Z. Tianshu, P. Hing, H. Huang, J. Kilner, Solid State Ion. 148, 567 (2002)

    Article  Google Scholar 

  7. S. Fukushima, T. Ohmichi, A. Maeda, H. Watanabe, J. Nucl. Mater. 105, 201 (1982)

    Article  ADS  Google Scholar 

  8. K. Minato, T. Shiratori, H. Serizawa, K. Hayashi, K. Une, K. Nogita, M. Hirai, M. Amaya, J. Nucl. Mater. 288, 57 (2001)

    Article  ADS  Google Scholar 

  9. K. Iwasaki, T. Matsui, K. Yanai, R. Yuda, Y. Arita, T. Nagasaki, N. Yokohama, I. Tokura, K. Une, K. Harada, J. Nucl. Sci. Technol. 46, 673 (2009)

    Article  Google Scholar 

  10. M. Zinkevich, D. Djurovic, F. Aldinger, in Proc. 7th Euro. SOFC Forum 2006, ed. by J. Kilner (Lucerie, Switzerland, 2006) P0512 (CD ROM)

  11. J.W. McMurray, D. Shin, B.W. Slone, T.M. Besmann, J. Nucl. Mater. 452, 397 (2014)

    Article  ADS  Google Scholar 

  12. V.V. Kharton, J. Mater. Sci. 36, 1105 (2001)

    Article  ADS  Google Scholar 

  13. N.M. Sammes, Zhihong Cai. Solid State Ion. 100, 39 (1997)

    Article  Google Scholar 

  14. D. Josell, J. Warren, A. Cezairliyan, J. Appl. Phys. 78, 6867 (1995)

    Article  ADS  Google Scholar 

  15. V. Grover, A.K. Tyagi, Mater. Res. Bull. 39, 859 (2004)

    Article  Google Scholar 

  16. C. Goulart, E. Djurado, J. Eur. Ceram. Soc. 33, 769 (2013)

    Article  Google Scholar 

  17. Y. Ikuma, K. Takao, M. Kamiya, E. Shimada, Mater. Sci. Eng. B 99, 48 (2003)

    Article  Google Scholar 

  18. S.J. Hong, A.V. Virkar, J. Am. Ceram. Soc. 78, 433 (1995)

    Article  Google Scholar 

  19. T. Ohmichi, S. Fukushima, A. Maeda, H. Watanabe, J. Nucl. Mater. 102, 40 (1981)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  21. T. Ohashi, S. Yamazaki, T. Tokunaga, Y. Arita, T. Matsui, T. Harami, K. Kobayashi, Solid State Ion. 113–115, 559 (1998)

    Article  Google Scholar 

  22. S. Yamazaki, T. Matsui, T. Ohashi, Y. Arita, Solid State Ion. 136–137, 913 (2000)

    Article  ADS  Google Scholar 

  23. K. Kossoy, Q. Wang, R. Korobko, V. Grover, Y. Feldman, E. Wachtel, A.K. Tyagi, A.I. Frenkel, I. Lubomirsky. (2013). https://doi.org/10.1103/PhysRevB.87.054101

  24. D.J. Kim, J. Am. Ceram. Soc. 72, 1415 (1989)

    Article  Google Scholar 

  25. P.V. Mao, T. Arima, Y. Inagaki, K. Idemitsu, in Proceedings of 27th International Conference on Nuclear Engineering (2019), Paper No. ICONE27-1927

    Article  Google Scholar 

  26. S. Sameshima, M. Kawaminami, Y. Hirata, J. Ceram. Soc. Jpn. 110, 597 (2002)

    Article  Google Scholar 

  27. A.T. Nelson, D.R. Rittman, J.T. White, J.T. Dunwoody, M. Kato, K.J. McClellan, J. Am. Ceram. Soc. 97, 3652 (2014)

  28. F.A. Kuznetsov, T.N. Rezukina, A. Golushenko, Zhur. Fiz. Khin. 34 (1960), 101 (referred in O. Knacke, O. Knbaschewski, and K. Hesselman, Thermochemical Properties of Inorganic Substances, 2nd ed., Springer Verlag, Berlin, 1991)

    Article  Google Scholar 

  29. R.J.M. Konings, O. Bones, A. Kovács, D. Manara, D. Sedmidubský, L. Gorokhov, V.S. Lorish, V. Yungman, E. Shenyavskaya, E. Osina. (2014). https://doi.org/10.1063/1.4825256

    Article  ADS  Google Scholar 

  30. R. Venkata Krishnan, K. Nagarajan, Thermochimica Acta. 440, 141 (2006)

    Article  ADS  Google Scholar 

  31. H.S. Kim, C.Y. Joung, B.H. Lee, J.Y. Oh, Y.H. Koo, P. Heimgartner, J. Nucl. Mater. 378, 98 (2008)

    Article  ADS  Google Scholar 

  32. J.K. Fink, J. Nucl. Mater. 279, 1 (2000)

    Article  Google Scholar 

  33. H. Kopp, Philos. Trans. R. Soc. Lond. 155, 71 (1865)

    Article  ADS  Google Scholar 

  34. M.C. Roufosse, P.G. Klemens, J. Geophys. Res. 79, 703 (1974)

    Article  ADS  Google Scholar 

  35. M. Khafizov, I.W. Park, A. Chernatynskiy, J. Lin, J.J. Moore, D. Swank, T. Lillo, S.R. Phillpot, A.E. Azab, D.H. Hurley, J. Am. Ceram. Soc. 97, 562 (2014)

    Article  ADS  Google Scholar 

  36. C. Ronchi, M. Sheindlin, M. Musella, G.J. Hyland, J. Appl. Phys. 85, 776 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  37. C.G.S. Pillai, P. Raj, J. Nucl. Mater. 277, 116 (2000)

  38. R.L. Gibby, J. Nucl. Mater. 38, 163 (1971)

    Article  Google Scholar 

  39. K. Ackland, J.M.D. Coey, Phys. Rep. 746, 1 (2018)

    Article  Google Scholar 

  40. K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X.Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, D.A. Andersson. (2014). https://doi.org/10.1038/ncomms5551

    Article  ADS  Google Scholar 

  41. J.P. Moore, D.L. Mcelroy, J. Am. Ceram. Soc. 54, 40 (1971)

    Article  Google Scholar 

  42. F. Gendron, J. Autschbach, J. Phys. Chem. Lett. 8, 673 (2017)

    Article  Google Scholar 

  43. ​Y. Hinatsu, T. Fujino, J. Solid State Chem. 60, 195 (1985)

    Article  Google Scholar 

  44. M. Hirai, S. Ishimoto, J. Nucl. Sci. Technol. 28, 995 (1991)

    Article  ADS  Google Scholar 

  45. D.D. Lanning, C.E. Beyer, K.J. Geelhood, Technical Report NUREG/CR-6534, Vol. 4, PNNL-11513 (2005)

Download references

Acknowledgments

The authors would like to thank Dr. M. Watanabe, the Center of Advanced Instrumental Analysis, Kyushu University, for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Mao, P., Arima, T., Inagaki, Y. et al. Evaluation of Structural and Thermal Properties of Ce1-yGdyO2-x Solid Solution. Int J Thermophys 41, 111 (2020). https://doi.org/10.1007/s10765-020-02689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02689-6

Keywords

Navigation