Skip to main content
Log in

Generalized Thermoelastic Interactions in a Poroelastic Material Without Energy Dissipations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The purpose of this investigation is providing a method to study the effect of porosity in a porothermoelastic medium by the finite element technique. The formulations are applied under Green-Naghdi model without energy dissipations. One-dimensional application for a poroelastic half-space is considered. Due to the complex basic equations, the finite element method (FEM) has been adopted to solve this problem. The numerical outcomes for displacements, temperatures and the stress components are represented graphically for the solid and the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Biot, General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23, 91–96 (1956)

    MathSciNet  MATH  Google Scholar 

  2. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  4. I. Abbas, Natural frequencies of a poroelastic hollow cylinder. Acta Mech. 186, 229–237 (2006)

    Article  Google Scholar 

  5. M. Schanz, A.-D. Cheng, Transient wave propagation in a one-dimensional poroelastic column. Acta Mech. 145, 1–18 (2000)

    Article  Google Scholar 

  6. D. McTigue, Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. Solid Earth 91, 9533–9542 (1986)

    Article  Google Scholar 

  7. B. Singh, On propagation of plane waves in generalized porothermoelasticity. Bull. Seismol. Soc. Am. 101, 756–762 (2011)

    Article  Google Scholar 

  8. H. Youssef, Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. Sci. 44, 222–227 (2007)

    Article  Google Scholar 

  9. B. Singh, Rayleigh surface wave in a porothermoelastic solid half-space, in Poromechanics VI. 2017. pp. 1706–1713

  10. M.H. Alawi, Generalized porothermoelasticity of asphaltic material. Engineering 3, 1102 (2011)

    Article  Google Scholar 

  11. M.H. Alawi, Asphaltic material in the context of generalized porothermoelasticity. Int. J. Soft Comput. (IJSC) 8, 27–43 (2017)

    Article  Google Scholar 

  12. A. Sur, Wave propagation analysis of porous asphalts on account of memory responses. Mech. Based Design Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1712553

    Article  Google Scholar 

  13. E.M. Hussein, Effect of the porosity on a porous plate saturated with a liquid and subjected to a sudden change in temperature. Acta Mech. 229, 2431–2444 (2018)

    Article  MathSciNet  Google Scholar 

  14. B. Singh, Elastic wave propagation and attenuation in a generalized thermoporoelastic model. Multidiscipl. Model. Mater. Struct. 9, 256–267 (2013)

    Article  Google Scholar 

  15. M. Ezzat, S. Ezzat, Fractional thermoelasticity applications for porous asphaltic materials. Petrol. Sci. 13, 550–560 (2016)

    Article  Google Scholar 

  16. T. Saeed, I. Abbas, M. Marin, A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12, 488 (2020)

    Article  Google Scholar 

  17. M. Wen, J. Xu, H. Xiong, Thermo-hydro-mechanical dynamic response of a cylindrical lined tunnel in a poroelastic medium with fractional thermoelastic theory. Soil. Dyn. Earthquake Eng. 130, 105960 (2020)

    Article  Google Scholar 

  18. F. Zhou, H. Liu, S. Li, Propagation of thermoelastic waves in unsaturated porothermoelastic media. J. Therm. Stress. 42, 1256–1271 (2019)

    Article  Google Scholar 

  19. J.M. Carcione, F. Cavallini, E. Wang, J. Ba, L.Y. Fu, Physics and simulation of wave propagation in linear thermoporoelastic media. J. Geophys. Res. Solid Earth 124, 8147–8166 (2019)

    Article  ADS  Google Scholar 

  20. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  21. A. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Series A Math. Phys. Sci. 432, 171–194 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  22. M.I. Othman, M. Marin, Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory. Results Phys. 7, 3863–3872 (2017)

    Article  ADS  Google Scholar 

  23. M. Marin, A. Öchsner, The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Continuum Mech. Thermodyn. 29, 1365–1374 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Sur, M. Kanoria, Memory response on thermal wave propagation in an elastic solid with voids. Mechanics based design of structures and machines, 1–22 (2019)

  25. I.A. Abbas, Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity. J. Comput. Theor. Nanosci. 11, 987–992 (2014)

    Article  Google Scholar 

  26. N. Sarkar, S. Mondal, Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory-dependent derivative. J. Appl. Math. Mech. 99, e201800343 (2019)

    MathSciNet  Google Scholar 

  27. M.I. Othman, S. Mondal, Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories. Int. J. Numer. Meth. Heat Fluid Flow 30, 1025–1046 (2019)

    Article  Google Scholar 

  28. I.A. Abbas, H.M. Youssef, Finite element analysis of two-temperature generalized magneto-thermoelasticity. Arch. Appl. Mech. 79, 917–925 (2009)

    Article  ADS  Google Scholar 

  29. M.I. Othman, I.A. Abbas, Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method. Meccanica 46, 413–421 (2011)

    Article  MathSciNet  Google Scholar 

  30. N. Sharma, R. Kumar, P. Lata, Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation. Mater. Phys. Mech. 22, 107–117 (2015)

    ADS  Google Scholar 

  31. A. Sur, M. Kanoria, Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phase-lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)

    Article  Google Scholar 

  32. A. Zeeshan, R. Ellahi, F. Mabood, F. Hussain, Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane. Int. J. Numer. Meth. Heat Fluid Flow 29, 2854–2869 (2019)

    Article  Google Scholar 

  33. M. Sheikholeslami, R. Ellahi, A. Shafee, Z. Li, Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: an application of entropy generation and exergy loss. Int. J. Numer. Meth. Heat Fluid Flow 29, 1079–1102 (2019)

    Article  Google Scholar 

  34. M. Marin, S. Vlase, R. Ellahi, M. Bhatti, On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure. Symmetry 11, 863 (2019)

    Article  Google Scholar 

  35. R. Ellahi, S.M. Sait, N. Shehzad, Z. Ayaz, A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Meth. Heat Fluid Flow 30, 834–854 (2019)

    Article  Google Scholar 

  36. K. Milani Shirvan, M. Mamourian, S. Mirzakhanlari, A. Rahimi, R. Ellahi, Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver. Int. J. Numer. Methods Heat Fluid Flow 27, 2385–2399 (2017)

    Article  Google Scholar 

  37. K. Milani Shirvan, M. Mamourian, R. Ellahi, Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port. Int. J. Numer. Methods Heat Fluid Flow 27, 2053–2069 (2017)

    Article  Google Scholar 

  38. M. Marin, S. Nicaise, Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28, 1645–1657 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Marin, R. Ellahi, A. Chirilă, On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 33, 219–232 (2017)

    MathSciNet  MATH  Google Scholar 

  40. R. Mohamed, I.A. Abbas, S. Abo-Dahab, Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction. Commun. Nonlinear Sci. Numer. Simul. 14, 1385–1395 (2009)

    Article  ADS  Google Scholar 

  41. I.A. Abbas, Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica 49, 1697–1708 (2014)

    Article  Google Scholar 

  42. I.A. Abbas, H.M. Youssef, A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method. Int. J. Thermophys. 33, 1302–1313 (2012)

    Article  ADS  Google Scholar 

  43. G. Palani, I. Abbas, Free convection MHD flow with thermal radiation from an impulsively started vertical plate. Nonlinear Anal. Model. Control 14, 73–84 (2009)

    Article  Google Scholar 

  44. B. Singh, Reflection of plane waves from a free surface of a porothermoelastic solid half-space. J. Porous Media 16, 945–957 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. (KEP-92-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim A. Abbas.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, F., Abbas, I.A. Generalized Thermoelastic Interactions in a Poroelastic Material Without Energy Dissipations. Int J Thermophys 41, 95 (2020). https://doi.org/10.1007/s10765-020-02673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02673-0

Keywords

Navigation