Skip to main content

Advertisement

Log in

Thermal Conductivity Measurements of Liquid Ammonia by the Transient Short-Hot-Wire Method

  • ATPC 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Most existing thermal conductivity data for ammonia were obtained before 1988. Data obtained before 1988 may be affected by convection. The potential for these effects needs to be examined by the transient hot-wire method with high-speed sampling. In this study, the thermal conductivity of liquid ammonia was measured by the transient short-hot-wire method and compared with values from REFPROP 10.0. The transient short-hot-wire method was used to measure thermal conductivity at 284–354 K and 2–10 MPa. Compared with the calculated values from REFPROP 10.0, the average absolute deviation was 5.6 % and all the measured values were lower than those from REFPROP 10.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Pearson, Int. J. Refrig. 31, 545 (2008)

    Article  Google Scholar 

  2. W. Wu, B. Wang, W. Shi, X. Li, Renew. Sustain. Energy Rev. 31, 681 (2014)

    Article  Google Scholar 

  3. J.J. Lagowski, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 115 (2007)

    Article  Google Scholar 

  4. R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrog. Energy 37, 1482 (2012)

    Article  Google Scholar 

  5. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Koijima, Appl. Energy Mater. 1, 232 (2018)

    Article  Google Scholar 

  6. K.E. Lamb, M.D. Dolan, D.F. Kennedy, Int J. Hydrog. Energy 44, 3580 (2019)

    Article  Google Scholar 

  7. R. Dwiliński, J.M. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L.P. Sierzputowski, Acta Phys. Pol. A 90, 763 (1996)

    Article  Google Scholar 

  8. A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, K. Oshima, J. Cryst. Growth 260, 67 (2004)

    Article  ADS  Google Scholar 

  9. D. Tomida, Y. Kagamitani, Q. Bao, K. Hazu, H. Sawayama, S.F. Chichibu, C. Yokoyama, T. Fukuda, T. Ishiguro, J. Cryst. Growth 353, 59 (2012)

    Article  ADS  Google Scholar 

  10. D. Tomida, Q. Bao, M. Saito, K. Kurimoto, F. Sato, T. Ishiguro, S.F. Chichibu, Appl. Phys. Express 11, 091002 (2018)

    Article  ADS  Google Scholar 

  11. Q.-S. Chen, V. Prasad, W.R. Hu, J. Cryst. Growth 258, 181 (2003)

    Article  ADS  Google Scholar 

  12. Y. Masuda, A. Suzuki, Y. Mikawa, Y. Kagamitani, T. Ishiguro, C. Yokoyama, T. Tsukada, Int. J. Heat Mass Transf. 53, 940 (2010)

    Article  Google Scholar 

  13. Y. Masuda, O. Sato, D. Tomida, C. Yokoyama, Jpn. J. Appl. Phys. 55, 05FC03 (2016)

    Article  Google Scholar 

  14. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Data 23. REFPROP Version 10.0, NIST (2018)

  15. R. Tufeu, D.Y. Ivanov, Y. Garrabos, B. Le Neindre, Ber. Bunsenges. Phys. Chem. 88, 422 (1984)

    Article  Google Scholar 

  16. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 043101 (2018)

    Article  ADS  Google Scholar 

  17. F.N. Shamsetdinov, Z.I. Zaripov, I.M. Abdulagatov, M.L. Huber, F.M. Gumerov, F.R. Gabitov, A.F. Kazakov, Int. J. Refrig. 36, 1347 (2013)

    Article  Google Scholar 

  18. C.E. Baker, R.S. Brokaw, J. Chem. Phys. 43, 3519 (1965)

    Article  ADS  Google Scholar 

  19. R. Afshar, S. Murad, S.C. Saxena, Chem. Eng. Comm. 10, 1 (1981)

    Article  Google Scholar 

  20. B. Stӓlhane, S. Pyk, Tek. Tidskr. 28, 389 (1931)

    Google Scholar 

  21. A.I. Johns, A.C. Scott, J.T.R. Watson, D. Ferguson, A.A. Clifford, Phil. Trans. R. Soc. Lond. A 325, 295 (1988)

    Article  ADS  Google Scholar 

  22. Y. Nagasaka, A. Nagashima, Rev. Sci. Instrum. 52, 229 (1981)

    Article  ADS  Google Scholar 

  23. Y. Nagasaka, A. Nagashima, Ind. Eng. Chem. Fundam. 20, 216 (1981)

    Article  Google Scholar 

  24. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Int. J. Thermophys. 18, 327 (1997)

    Article  ADS  Google Scholar 

  25. S. Moroe, P.L. Woodfield, K. Kimura, M. Kohno, J. Fukai, M. Fujii, K. Shinzato, Y. Takata, Int. J. Thermophys. 32, 1887 (2011)

    Article  ADS  Google Scholar 

  26. D. Tomida, S. Kenmochi, T. Tsukada, C. Yokoyama, Heat Transf. Asian Res. 36, 361 (2007)

    Article  Google Scholar 

  27. D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Int. J. Thermophys. 28, 1147 (2007)

    Article  ADS  Google Scholar 

  28. D.P. Needham, H. Ziebland, Int. J. Heat Mass Transf. 8, 1387 (1965)

    Article  Google Scholar 

  29. A.A. Clifford, R. Tufeu, Trans. ASME 110, 992 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (C) (Grant Number JP17K05038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tomida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 12th Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomida, D., Yoshinaga, T. Thermal Conductivity Measurements of Liquid Ammonia by the Transient Short-Hot-Wire Method. Int J Thermophys 41, 53 (2020). https://doi.org/10.1007/s10765-020-02633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02633-8

Keywords

Navigation