Skip to main content
Log in

Thermal Transport at Interface Between Single-Layer Graphene and Water Film

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Through a series of molecular dynamics (MD) simulations, the interfacial thermal transport between liquid water and single-layer graphene film on the silicon substrate was studied. Three factors were justified for the interfacial thermal transport including interfacial interaction strength, water film thickness and water density. The results show that the interfacial heat transport capacity exhibits a significant dependence on the interaction strength, and this change in interfacial thermal conductance (ITC) was verified by calculating the vibrational density of states (VDOS). Meanwhile, dramatic oscillation was observed in the density of the liquid water near the wall, indicating that the motion law of water molecules was affected by the interaction force at the interface. Further study on the effect of water film thickness and density on the interfacial thermal transport, it is found that there is a critical value for the ITC with the change of water film thickness. When the water film thickness is greater than 4 nm, the effect on the interfacial thermal transport is not obvious, and the ITC gradually tends to a stable value. However, for the liquid water density, the ITC basically shows an increasing trend with the increase of density. In addition, the solid–liquid interface spacing was found to be variability and the distance is determined by the thickness and density of the water film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Mehra, L. Mu, T. Ji, X. Yang, K. Jie, J. Gu, J. Zhu, Appl. Mater. Today. 12, 92 (2018)

    Article  Google Scholar 

  2. A.T. Pham, M. Barisik, B.H. Kim, Int. J. Heat Mass Transfer. 97, 422 (2016)

    Article  Google Scholar 

  3. L.G. Pollack, Rev. Mod. Phys. 41, 48 (1969)

    Article  ADS  Google Scholar 

  4. S. Maruyama, Therm. Sci. Eng. 7, 63 (1999)

    Google Scholar 

  5. S.M. Lee, G. Matamis, D.G. Cahill, W.P. Allen, Microscale Thermophys. Eng. 2, 31 (1998)

    Article  Google Scholar 

  6. V.K. Dwivedi, R. Gopal, S. Ahmad, Microelectron. J. 31, 405 (2000)

    Article  Google Scholar 

  7. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  8. E. Higurashi, K. Okumura, K. Nakasuji, T. Suga, Jpn. J. Appl. Phys. 54, 030207 (2015)

    Article  ADS  Google Scholar 

  9. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  10. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  11. G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, Nanotechnology. 23, 112001 (2012)

    Article  ADS  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  13. K.R. Pyun, S.H. Ko, Mater. Today Energy. 12, 431 (2019)

    Article  Google Scholar 

  14. L. Liu, L. Zhang, Z. Sun, G. Xi, Nanoscale. 4, 6279 (2012)

    Article  ADS  Google Scholar 

  15. T. Ohara, D. Torii, J. Chem. Phys. 122, 159 (2005)

    Article  Google Scholar 

  16. F. Jabbari, A. Rajabpour, S. Saedodin, S. Wongwises, J. Mol. Liq. 282, 197 (2019)

    Article  Google Scholar 

  17. A. Rajabpour, R. Seif, S. Arabha, M.M. Heyhat, S. Merabia, A. Hassanali, J. Chem. Phys. 150, 114701 (2019)

    Article  ADS  Google Scholar 

  18. T.Q. Vo, B.H. Kim, Int. J. Precis. Eng. Manuf. 16, 1341 (2015)

    Article  Google Scholar 

  19. M. Barisik, A. Beskok, Int. J. Therm. Sci. 77, 47 (2014)

    Article  Google Scholar 

  20. L. Xue, P. Keblinski, S.R. Phillpot, U.S. Choi, J.A. Eastman, Int. J. Heat Mass Transfer. 47, 4277 (2004)

    Article  Google Scholar 

  21. J.R. Henderson, F. Swol, Mol. Phys. 51, 991 (1984)

    Article  ADS  Google Scholar 

  22. M. Barisik, A. Beskok, Microfluid. Nanofluid. 11, 269 (2011)

    Article  Google Scholar 

  23. M. Barisik, A. Beskok, Mol. Simul. 39, 700 (2013)

    Article  Google Scholar 

  24. G. Nagayama, C. Ping, Int. J. Heat Mass Transfer. 47, 501 (2004)

    Article  Google Scholar 

  25. B.H. Kim, A. Beskok, T. Cagin, J. Chem. Phys. 129, 551 (2008)

    Google Scholar 

  26. T. Ohara, D. Suzuki, Microscale Thermophys. Eng. 4, 189 (2000)

    Article  Google Scholar 

  27. L. Xue, P. Keblinski, S.R. Phillpot, U.S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)

    Article  ADS  Google Scholar 

  28. M. Shibahara, T. Ohara, J. Therm. Sci. Technol. 6, 247 (2011)

    Article  Google Scholar 

  29. Y. Ueki, Y. Miyazaki, M. Shibahara, T. Ohara, Int. J. Heat Mass Transfer. 120, 608 (2018)

    Article  Google Scholar 

  30. Y. Guo, D. Surblys, Y. Kawagoe, H. Matsubara, X. Liu, T. Ohara, Int. J. Heat Mass Transfer. 135, 115 (2019)

    Article  Google Scholar 

  31. R. Khare, P. Keblinski, A. Yethiraj, Int. J. Heat Mass Transfer. 49, 3401 (2006)

    Article  Google Scholar 

  32. Y. Guo, M. Wang, Phys. Rep. 595, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Zhang, A.R. Gans-Forrest, E. Lee, X. Zhang, C. Qu, Y. Pang, T. Luo, A.C.S. Appl, Mater. Interfaces. 8, 33326 (2016)

    Article  Google Scholar 

  34. L. Zhang, L. Liu, Nanoscale. 11, 3656 (2019)

    Article  Google Scholar 

  35. L. Zhang, L. Liu, A.C.S. Appl, Mater. Interfaces. 9, 28949 (2017)

    Article  Google Scholar 

  36. L. Zhang, Z. Bai, L. Liu, Adv. Mater. Interfaces. 3, 1600211 (2016)

    Article  Google Scholar 

  37. M.E. Caplan, A. Giri, P.E. Hopkins, J. Chem. Phys. 140, 186101 (2014)

    Article  Google Scholar 

  38. F. Michael, D. Dimitris, Entropy. 20, 362 (2018)

    Article  Google Scholar 

  39. H.J.C. Berendsen, J.R. Grigera, T.P.J. Straatsma, Phys. Chem 91, 6269 (1987)

    Article  Google Scholar 

  40. M.P. Allen, D.J. Tildesley, Phys. Today 42, 105 (1989)

    Article  Google Scholar 

  41. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952 (1992)

    Article  Google Scholar 

  42. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  43. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, (Academic Press, San Diego, 1997)

  44. D.W. Brenner, Phys. Rev. B: Condens. Matter Mater. Phys. 42, 9458 (1990)

    Article  ADS  Google Scholar 

  45. A. Pham, M. Barisik, B.H. Kim, J. Chem. Phys. 139, 793 (2013)

    Article  Google Scholar 

  46. J. Tersoff, Phys. Rev. B: Condens. Matter Mater. Phys. 39, 5566 (1989)

    Article  ADS  Google Scholar 

  47. L. Lindsay, D.A. Broido, Phys. Rev. B: Condens. Matter Mater. Phys. 81, 262 (2010)

    Article  Google Scholar 

  48. S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 39, 334 (2007)

    Article  Google Scholar 

  49. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  50. M.H. Bagheri, R.T. Loibl, J.A. Boscoboinik, S.N. Schiffres, Carbon 155, 580 (2019)

    Article  Google Scholar 

  51. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  52. X. Zhang, M. Hu, D. Tang, J. Appl. Phys. 113, 194307 (2013)

    Article  ADS  Google Scholar 

  53. M.S. Green, J. Chem. Phys. 20, 1281 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  54. R. Kubo, Lect. Theor. Phys. 1, 120 (1959)

    Google Scholar 

  55. M. Hu, J.V. Goicochea, B. Michel, D. Poulikakos, Nano Lett. 10, 279 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding supports from National Natural Science Foundation of China (Nos. 51876223) and Natural Science Foundation of Shandong Province (Nos. ZR201807060413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Chen, J. & Wang, Z. Thermal Transport at Interface Between Single-Layer Graphene and Water Film. Int J Thermophys 41, 48 (2020). https://doi.org/10.1007/s10765-020-02629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02629-4

Keywords

Navigation