Skip to main content
Log in

Determination of the Optimum Stability Conditions in Al2O3 Nanofluids with Artificial Neural Networks

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the optimum stability conditions in Al2O3 nanofluids were determined by utilizing artificial neural networks (ANN). First of all, nanofluids used in the experimental study were prepared by synthesizing Al2O3 nanoparticles and mobile brand oil as a base fluid, which is used as a heat transfer fluid in the industry. To ensure stability, the nanoparticles were synthesized in the oil by adding the specified acid and base solutions. The sedimentation method was applied to measure the stability after ultrasonic mixing stage of nanofluids which determined as Al2O3 nanoparticles 1 %, 2 %, and 3 % by mass. Periodic sedimentation measurements were continued for 36 h. Optimum conditions were obtained using the successful models. Experiments were repeated for optimum conditions, and the consistency of the model and agreement with the experimental system were observed. According to the findings, the highest improvement rates in the sedimentation values of the optimum acid–base ratios obtained by modeling with ANN were 11.2 %, 32.6 %, and 34 % for acid simulations and 55.2 %, 47.3 %, and 49.2 % for base simulations, respectively. Besides, the experimental results have been successfully overlapped with a detailed simulation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babita, S.K. Sharma, S.M. Gupta, Exp. Therm. Fluid Sci. 79, 202 (2016)

    Article  Google Scholar 

  2. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  3. A. Ghadimi, I.H. Metselaar, Exp. Therm. Fluid Sci. 51, 1 (2013)

    Article  Google Scholar 

  4. R.M. Mostafizur, M.H.U. Bhuiyan, R. Saidur, A.R. Abdul Aziz, Int. J. Heat Mass Transf. 76, 350 (2014)

    Article  Google Scholar 

  5. G.D. Xia, R. Liu, J. Wang, M. Du, Int. Commun. Heat Mass Transf. 76, 256 (2016)

    Article  Google Scholar 

  6. M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, Int. Commun. Heat Mass Transf. 37, 687 (2010)

    Article  Google Scholar 

  7. M.S. Liu, M.C.C. Lin, I. Te Huang, C.C. Wang, Chem. Eng. Technol. 29, 72 (2006)

    Article  Google Scholar 

  8. R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transf. 52, 4675 (2009)

    Article  Google Scholar 

  9. S. Eiamsa-ard, K. Kiatkittipong, Int. J. Thermophys. 40, 28 (2019)

    Article  ADS  Google Scholar 

  10. N.A.C. Sidik, S. Samion, J. Ghaderian, M.N.A.W.M. Yazid, Int. J. Heat Mass Transf. 108, 79 (2017)

    Article  Google Scholar 

  11. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  12. M.P. Beck, Y. Yuan, P. Warrier, A.S. Teja, J. Nanoparticle Res. 11, 1129 (2009)

    Article  ADS  Google Scholar 

  13. M. Chopkar, S. Sudarshan, P.K. Das, I. Manna, Metall. Mater. Trans. A 39, 1535 (2008)

    Article  Google Scholar 

  14. C. Choi, H.S. Yoo, J.M. Oh, Curr. Appl. Phys. 8, 710 (2008)

    Article  ADS  Google Scholar 

  15. S. Habibzadeh, A. Kazemi-Beydokhti, A.A. Khodadadi, Y. Mortazavi, S. Omanovic, M. Shariat-Niassar, Chem. Eng. J. 156, 471 (2010)

    Article  Google Scholar 

  16. X. Li, D. Zhu, X. Wang, J. Colloid Interface Sci. 310, 456 (2007)

    Article  ADS  Google Scholar 

  17. S. Manjula, S.M. Kumar, A.M. Raichur, G.M. Madhu, R. Suresh, M.A.L.A. Raj, Cerâmica 51, 121 (2007)

    Article  Google Scholar 

  18. H.T. Zhu, Y.S. Lin, Y.S. Yin, J. Colloid Interface Sci. 277, 100 (2004)

    Article  ADS  Google Scholar 

  19. M. Abdullah, S.R. Malik, M.H. Iqbal, M.M. Sajid, N.A. Shad, S.Z. Hussain, W. Razzaq, Y. Javed, Colloids Surf. A Physicochem. Eng. Asp. 554, 86 (2018)

    Article  Google Scholar 

  20. Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455, 70 (2007)

    Article  Google Scholar 

  21. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  22. R.B. Ganvir, P.V. Walke, V.M. Kriplani, Renew. Sustain. Energy Rev. 75, 451 (2017)

    Article  Google Scholar 

  23. N.A.C. Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, Int. Commun. Heat Mass Transf. 54, 115 (2014)

    Article  Google Scholar 

  24. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  25. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131 (2009)

    Article  ADS  Google Scholar 

  26. R. Sadeghi, S.G. Etemad, E. Keshavarzi, M. Haghshenasfard, Microfluid. Nanofluidics 18, 1023 (2015)

    Article  Google Scholar 

  27. M.K. Abdolbaqi, W.H. Azmi, R. Mamat, K.V. Sharma, G. Najafi, Appl. Therm. Eng. 102, 932 (2016)

    Article  Google Scholar 

  28. B. Buonomo, O. Manca, L. Marinelli, S. Nardini, Appl. Therm. Eng. 91, 181 (2015)

    Article  Google Scholar 

  29. S.S. Khaleduzzaman, M.R. Sohel, R. Saidur, J. Selvaraj, Procedia Eng. 105, 406 (2015)

    Article  Google Scholar 

  30. X. Shao, Y. Chen, S. Mo, Z. Cheng, T. Yin, Energy Procedia 75, 2049 (2015)

    Article  Google Scholar 

  31. S. Özerinç, S. Kakaç, A.G. YazIcIoǧlu, Microfluid. Nanofluidics 8, 145 (2010)

    Article  Google Scholar 

  32. M. Raja, R. Vijayan, P. Dineshkumar, M. Venkatesan, Renew. Sustain. Energy Rev. 64, 163 (2016)

    Article  Google Scholar 

  33. M. Hemmat Esfe, M. Afrand, W.M. Yan, M. Akbari, Int. Commun. Heat Mass Transf. 66, 246 (2015)

    Article  Google Scholar 

  34. A. Alirezaie, S. Saedodin, M.H. Esfe, S.H. Rostamian, J. Mol. Liq. 241, 173 (2017)

    Article  Google Scholar 

  35. M. Hemmat Esfe and S. Saedodin, Exp. Therm. Fluid Sci. 55, 1 (2014)

  36. E. Ahmadloo, S. Azizi, Int. Commun. Heat Mass Transf. 74, 69 (2016)

    Article  Google Scholar 

  37. M.A. Ariana, B. Vaferi, G. Karimi, Powder Technol. 278, 1 (2015)

    Article  Google Scholar 

  38. M. Hassanpour, B. Vaferi, M.E. Masoumi, Appl. Therm. Eng. 128, 1208 (2018)

    Article  Google Scholar 

  39. M. Hemmat Esfe, Appl. Therm. Eng. 126, 559 (2017)

    Article  Google Scholar 

  40. M. Hemmat Esfe, M.R.H. Ahangar, D. Toghraie, M.H. Hajmohammad, H. Rostamian, H. Tourang, J. Therm. Anal. Calorim. 126, 837 (2016)

    Article  Google Scholar 

  41. M. Hemmat Esfe, S. Saedodin, N. Sina, M. Afrand, S. Rostami, Int. Commun. Heat Mass Transf. 68, 50 (2015)

    Article  Google Scholar 

  42. M. Hemmat Esfe, W.M. Yan, M. Afrand, M. Sarraf, D. Toghraie, M. Dahari, Int. Commun. Heat Mass Transf. 74, 125 (2016)

    Article  Google Scholar 

  43. G.A. Longo, C. Zilio, L. Ortombina, M. Zigliotto, Int. Commun. Heat Mass Transf. 83, 8 (2017)

    Article  Google Scholar 

  44. F. Nasirzadehroshenin, H. Maddah, H. Sakhaeinia, A. Pourmozafari, Int. J. Thermophys. 40, 87 (2019)

    Article  ADS  Google Scholar 

  45. G. López-Gamboa, J.L. Jiménez-Pérez, Z.N. Correa-Pacheco, M.L. Alvarado-Noguez, M. Amorim Lima, A. Cruz-Orea, J.G. Mendoza Alvarez, Int. J. Thermophys. 41, 10 (2020)

    Article  ADS  Google Scholar 

  46. W. Xian-ju, L.I. Xin-fang, Chin. Phys. Lett. 26, 1 (2009)

    Article  Google Scholar 

  47. H. Yarveicy, M.M. Ghiasi, A.H. Mohammadi, Chem. Eng. Res. Des. 132, 208 (2018)

    Article  Google Scholar 

  48. G.E. Nasr, E.A. Badr, C. Joun, Energy Convers. Manag. 44, 893 (2003)

    Article  Google Scholar 

  49. S. Chapra, R. Canale, H. Heperkan, Yazılım ve Programlama Uygulamalarıyla Mühendisler Için Sayısal Yöntemler (Literatür Yayıncılık, Istanbul, 2003)

    Google Scholar 

  50. E. Eǧrioǧlu, Ç.H. Aladaǧ, S. Günay, Appl. Math. Comput. 195, 591 (2008)

    MathSciNet  Google Scholar 

  51. M. Zareei, H. Yoozbashizadeh, H.R. Madaah Hosseini, J. Therm. Anal. Calorim. 135, 1185 (2019)

    Article  Google Scholar 

  52. I.M. Mahbubul, T.H. Chong, S.S. Khaleduzzaman, I.M. Shahrul, R. Saidur, B.D. Long, M.A. Amalina, Ind. Eng. Chem. Res. 53, 6677 (2014)

    Article  Google Scholar 

  53. L. Li, Y. Zhang, H. Ma, M. Yang, Phys. Lett. Sect. A Gen. At. Solid State Phys. 372, 4541 (2008)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by Turkish Council of Higher Education under scholar grad: ÖYP-1919-018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kapusuz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, F., Kapusuz, M., Namli, L. et al. Determination of the Optimum Stability Conditions in Al2O3 Nanofluids with Artificial Neural Networks. Int J Thermophys 41, 66 (2020). https://doi.org/10.1007/s10765-020-02625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02625-8

Keywords

Navigation