Skip to main content
Log in

Thermal Conductivity of UO2–BeO–Gd2O3 Nuclear Fuel Pellets

  • TEMPMEKO 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present paper, the influence of the beryllium oxide addition to increase the thermal conductivity in uranium dioxide fuel pellets containing gadolinium oxide as burnable poison was investigated. Fuel pellets of UO2, UO2–BeO–Gd2O3, and UO2–Gd2O3 were obtained in concentrations of 2–3 wt % of BeO and 6 wt % of Gd2O3. The thermal diffusivity was determined at room temperature and until 773 K by Laser Flash and Thermal Quadrupole methods, respectively. The thermal diffusivity and thermal conductivity were normalized to 95  % TD (theoretical density). The maximum relative expanded uncertainties of the thermal diffusivity and thermal conductivity measurements were estimated to be 7.5  % and 8.0  %, respectively. In addition, the obtained results were compared with the theoretical models and experimental data given in the literature. The results showed an increase in the thermal diffusivity and conductivity of the UO2 pellets with additions of BeO as compared to the values obtained with UO2 and UO2–Gd2O3 pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.S. Li, H. Garmestani, J. Schwartz, J. Nuc. Mat. 392, 22–27 (2009)

    Article  ADS  Google Scholar 

  2. Volkov B, Tverberg T and McGrath M 2014 Proc. Water Reactor Fuel Performance Meeting (Sendai) (Paper N. 100141)

  3. W. Zhou, R. Liu, S.T. Revankar, Ann. Nuc. Energy 81, 240–248 (2015)

    Article  Google Scholar 

  4. A.A. Kovalishin, V.N. Prosyolkov, V.D. Sidorenko, Y.V. Stogov, Phys. At. Nucl. 77, 1661–1663 (2014)

    Article  Google Scholar 

  5. S. Ishimoto, M. Hirai, K. Ito, Y. Korei, J. Nuc. Sci. Tech. 33, 134–140 (1996)

    Article  Google Scholar 

  6. Y. Wang, H. Sun, H. Wang, X. Pan, T. Li, J. Liu, Y. Zhang, X. Wang, J. Alloys Compd. 646, 626–631 (2015)

    Article  Google Scholar 

  7. D. Staicu, V.V. Rondinella, C.T. Walker, D. Papaioannou, R.J.M. Konings, C. Ronchi, M. Sheindlin, A. Sasahara, T. Sonoda, M. Kinoshita, J. Nuc. Mat. 453, 259–268 (2014)

    Article  ADS  Google Scholar 

  8. M. Hirai, J. Nuc. Mat. 173, 247–254 (1990)

    Article  ADS  Google Scholar 

  9. D.M. Camarano, F.A. Mansur, A.M.M. Santos, W.B. Ferraz, R.A.N. Ferreira, Int. J. Thermophys. 38, 137 (2017)

    Article  ADS  Google Scholar 

  10. Mansur F A, Camarano D M, Santos A M M, Ferraz W B, Ribeiro L S, Ferreira R A N, Santos A 2015 Proc. Int. Nuc. Atl. Conf. (São Paulo, BR, 4-9 October 2015)

  11. Ribeiro LS et al. 2015 Proc. Int. Nuc. Atl. Conf. (São Paulo, BR, 49 October 2015)

  12. American Society for Testing and Materials, ASTM E1461-13: standard test method for thermal diffusivity by the flash method ASTM international. West Conshohocken (2013). https://doi.org/10.1520/E1461

    Article  Google Scholar 

  13. A. Degiovanni, D. Maillet, S. André, J.C. Batsale, C. Moyne, Thermal quadrupoles: Solving the heat equation through integral transforms (Wiley, London, 2000)

    MATH  Google Scholar 

  14. JCGM Evaluation of measurement dataGuide to the Expression of Uncertainty in Measurement, JCGM 100:2008 (Joint Committee for Guides in Metrology, 2008)

  15. S.M. Ho, K.C. Radford, Nuc. Technol. 73, 350–360 (1985)

    Article  Google Scholar 

  16. International Atomic Energy Agency, Advances in fuel pellet technology for improved performance at high burnup 1996. (IAEA TEC-DOC 1036). https://www-pub.iaea.org/MTCD/Publications/PDF/te_1036_prn.pdf

  17. Ferreira R A N, Lopes J A M 2007 Proc. Int. Nuc. Atl. Conf. (Santos, BR, 30 September to 5 October)

  18. American Society for Testing and Materials 2017 ASTM B962: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, West Conshohocken, PA DOI: https://doi.org/10.1520/B0962-17

  19. NPL, in Test Report number 2018080343, 2018, National Physical Laboratory, Pyroceram 9606 sample

  20. International Atomic Energy Agency, Thermo-physical Materials Properties Database. (IAEA-THERPRO). http://therpro.hanyang.ac.kr

  21. International Atomic Energy Agency, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data 2008 (IAEA-THPH). http://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-THPH_web.pdf

  22. R.V. Krishnan, G. Panneerselvam, P. Manikandan, M.P. Antony, K. Nagarajan, J. Nuc. Radiochem. Sci. 10, 19–26 (2009)

    Google Scholar 

  23. International Atomic Energy Agency, Characteristics and Use of Urania-Gadolinia Fuels 1995.(IAEA IAEA-TECDOC-844) p. 219 https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/045/27045166.pdf

  24. Dorr, W and Assmann, H 1979 Proc. 4 th Int. Meeting on Modern Ceramics Tech. (Saint Vicent, IT, 20–31 May)

  25. B. Palanki, J. Mat. Sci. Chem. Eng. 4, 8–21 (2016)

    Google Scholar 

  26. S. Fukushima, T. Ohmichi, A. Maeda, H. Watanabe, J. Nuc. Mat. 105, 201–210 (1982)

    Article  ADS  Google Scholar 

  27. C. Ronchi, M. Sheindlin, M. Musela, G.J. Hyland, J. Appl. Phys. 85, 776–789 (1999)

    Article  ADS  Google Scholar 

  28. M. Hirai, S. Ishimoto, J. Nuc. Sci. Tech. 28, 995–1000 (1991)

    Article  Google Scholar 

  29. International Atomic Energy Agency, Thermophysical Properties Database of materials for light water reactors and heavy water reactor 2006. (IAEA-TECDOC-1496). https://www-pub.iaea.org/MTCD/Publications/PDF/te_1496_web.pdf

Download references

Acknowledgments

The authors thank the financial support of Sistema Brasileiro de Tecnologia (Sibratec-Modernit-SisNANO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Camarano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 14th International Symposium on Temperature and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camarano, D.M., Mansur, F.A., Santos, A.M.M. et al. Thermal Conductivity of UO2–BeO–Gd2O3 Nuclear Fuel Pellets. Int J Thermophys 40, 110 (2019). https://doi.org/10.1007/s10765-019-2574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2574-5

Keywords

Navigation