Skip to main content
Log in

Development and Long-Term Stability Assessment of Co–C Eutectic Fixed Point for Thermocouple Thermometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The long-term stability assessment on the Co–C eutectic fixed point cell indigenously developed at CSIR-National Physical Laboratory, India is presented. Metal–carbon eutectic fixed points are promising candidates for the direct traceability to high-temperature thermometry and radiometry. The acceptance of any fixed point as a temperature reference cell depends on its repeatability, reproducibility, and long-term stability. In this paper, we report the detailed investigations on development and realization of Co–C cell and comparison of successive 3-year data to evaluate the long-term stability and robustness of cell. We assigned melting transition temperature to Co–C cell by using Type-S thermocouple, calibrated on ITS-90 fixed points. The cell has been subjected for 270 h of melt–freeze cycle since its construction in 2014 and exhibits excellent thermo-mechanical stability. The Co–C melting transition temperature and measurement uncertainty were estimated by using the same Type-S thermocouple, for 3 years from 2015 to 2017, and overall drift for the cell was estimated to be 0.1 °C, after normalizing the drift of the thermocouple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Machin, K. Anhalt, M. Battuello et al., Measurement 78, 168 (2016). https://doi.org/10.1016/j.measurement.2015.09.033

    Article  Google Scholar 

  2. L. Crovini, H.J. Jung, R.C. Kemp, T.J. Quinn, H. Preston-Thomas, Metrologia 77, 3 (1990). https://doi.org/10.1088/0026-1394/27/1/002

    Article  Google Scholar 

  3. R.E. Bedford, G. Bonnier, H. Maas, F. Pavese, Suppl. Inf. ITS 90, 205 (1997)

    Google Scholar 

  4. Y. Yamada, B. Khlevnoy, Y. Wang, T. Wang, K. Anhalt, Metrologia 43, 139–144 (2006). https://doi.org/10.1088/0026-1394/43/2/S28

    Article  Google Scholar 

  5. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, Metrologia 36, 207 (1999). http://iopscience.iop.org/0026-1394/36/3/6

    Article  ADS  Google Scholar 

  6. Y.G. Kim, B.H. Kim, I. Yang, Metrologia 47, 239 (2010). https://doi.org/10.1088/0026-1394/47/3/014

    Article  ADS  Google Scholar 

  7. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, in: A possibility pract. high temp. Fixed points above Copp. Point, Proceedings 7th International symposium on temperature and thermal measurements in industry and science (Tempmeko) (Delft, The Netherlands: IMEKO/NMi), 1999: pp. 535–540

  8. G. Machin, P. Bloembergen, J. Hartmann, M. Sadli, Y. Yamada, Int. J. Thermophys. 28, 1976 (2007). https://doi.org/10.1007/s10765-007-0250-7

    Article  ADS  Google Scholar 

  9. G. Machin, P. Bloembergen, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Woolliams, Y. Yamada, H. Yoon, Int. J. Thermophys. 31, 1779 (2010). https://doi.org/10.1007/s10765-010-0834-5

    Article  ADS  Google Scholar 

  10. M. Sadli, P. Bloembergen, B. Khlevnoy, T. Wang, Y. Yamada, G. Machin, Int. J. Thermophys. 32, 1786 (2011). https://doi.org/10.1007/s10765-011-1009-8

    Article  ADS  Google Scholar 

  11. T. Wang, C. Bai, W. Dong, Z. Yuan, P. Bloembergen, F. Liu, Int. J. Thermophys. 32, 1719 (2011). https://doi.org/10.1007/s10765-011-0972-4

    Article  ADS  Google Scholar 

  12. R.N. Teixeira, G. Machin, Int. J. Thermophys. 38, 1 (2017). https://doi.org/10.1007/s10765-017-2205-y

    Article  Google Scholar 

  13. F. Girard, M. Battuello, M. Florio, Int. J. Thermophys. 28, 2009 (2007). https://doi.org/10.1007/s10765-007-0312-x

    Article  ADS  Google Scholar 

  14. A.D.W. Todd, M. Gotoh, D.J. Woods, K.D. Hill, Int. J. Thermophys. 32, 453 (2011). https://doi.org/10.1007/s10765-010-0907-5

    Article  ADS  Google Scholar 

  15. J.V. Pearce, H. Ogura, M. Izuchi, G. Machin, Metrologia 46, 473 (2009). https://doi.org/10.1088/0026-1394/46/5/011

    Article  ADS  Google Scholar 

  16. W. Dong, D. Lowe, G. Machin, P. Bloembergen, T. Wang, X. Lu, Measurement 106, 88 (2017). https://doi.org/10.1016/j.measurement.2017.04.005

    Article  Google Scholar 

  17. T. B. Massalski, H. Okamoto, Binary alloy phase diagrams ASM International, (1990)

  18. M. Holmsten, H. Ogura, P. Klason, S. Ljungblad, Int. J. Thermophys. (2015). https://doi.org/10.1007/s10765-015-1853-z

    Article  Google Scholar 

  19. E.R. Woolliams, G. Machin, D.H. Lowe, R. Winkler, Metrologia 43, R11 (2006). https://doi.org/10.1088/0026-1394/43/6/R01

    Article  ADS  Google Scholar 

  20. D. Lowe, G. Machin, Metrologia 49, 189 (2012). https://doi.org/10.1088/0026-1394/49/3/189

    Article  ADS  Google Scholar 

  21. Y. Kim, Z. Wei, H. Ogura, F. Jahan, Y. Singh, Metrologia 53, 03003 (2016)

    Article  ADS  Google Scholar 

  22. D. Lowe et al., Metrologia 54, 390 (2017). https://doi.org/10.1088/1681-7575/aa6eeb

    Article  ADS  Google Scholar 

  23. G. Machin, P. Castro, A. Levick, M.A. Villamañán, Measurement 44, 738 (2011). https://doi.org/10.1016/j.measurement.2011.01.003

    Article  Google Scholar 

  24. I. Yang, Y.G. Kim, K.S. Gam, Meas. Sci. Technol. 19, 015106 (2008). https://doi.org/10.1088/0957-0233/19/1/015106

    Article  ADS  Google Scholar 

  25. F. Edler, P. Ederer, A.C. Baratto, H.D. Vieira, Int. J. Thermophys. 28, 1983 (2007). https://doi.org/10.1007/s10765-007-0268-x

    Article  ADS  Google Scholar 

  26. M. Sadli, J. Fischer, Y. Yamada, V.I. Sapritsky, D. Lowe, G. Machin, in: Proc. TEMPMEKO 2004, 9th Int. Symp. Temp. Therm. Meas. Ind. Sci. ed. by D. Zvizdi´c, L.G. Bermanec, T. Velik. T. Staši´c (FSB/LPM, Zagreb. Croat. 2004), 2004: pp. 341–347

  27. O. Ongrai, C.J. Elliott, Int. J. Thermophys. 38, 1 (2017). https://doi.org/10.1007/s10765-017-2248-0

    Article  Google Scholar 

  28. L. Wang, Int. J. Thermophys. 38, 1 (2017). https://doi.org/10.1007/s10765-017-2321-8

    Article  Google Scholar 

  29. Z. Yuan, T. Wang, X. Lu, W. Dong, C. Bai, X. Hao, Y. Duan, Int. J. Thermophys. 32, 1744 (2011). https://doi.org/10.1007/s10765-011-0993-z

    Article  ADS  Google Scholar 

  30. C.J. Elliott, T. Ford, O. Ongrai, J.V. Pearce, Int. J. Thermophys. 38, 177 (2017). https://doi.org/10.1007/s10765-017-2313-8

    Article  ADS  Google Scholar 

  31. U. Pant, H. Meena, D.D. Shivagan, MAPAN J. Metrol. Soc. India 33, 201 (2011). https://doi.org/10.1007/s12647-018-0251-y

    Article  Google Scholar 

  32. E.R. Woolliams, K. Anhalt, M. Ballico et al., Phil. Trans. R. Soc. A 374, 20150044 (2016). https://doi.org/10.1098/rsta.2015.0044

    Article  ADS  Google Scholar 

  33. G. Machin, J. Engert, R.M. Gavioso, M. Sadli, E. Woolliams, Measurement 94, 149 (2016). https://doi.org/10.1016/j.measurement.2016.07.069

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. D. K. Aswal, Director, CSIR-NPL and Dr. Ranjana Mehrotra, Head, Physico-Mechanical Metrology Division for their constant support in this project. The financial support received from CSIR Project, “Measurement Innovations in Science and Technology (MIST-PSC-0111)” is acknowledged. Umesh Pant acknowledges the AcSIR and CSIR for the award of Senior Research Fellowship. We acknowledge our colleagues Dr. Komal Bapna, Yetendra, and Mahesh Gandhi from Temperature and Humidity Metrology for their technical help during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Shivagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, U., Meena, H., Gupta, G. et al. Development and Long-Term Stability Assessment of Co–C Eutectic Fixed Point for Thermocouple Thermometry. Int J Thermophys 40, 80 (2019). https://doi.org/10.1007/s10765-019-2546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2546-9

Keywords

Navigation