Skip to main content
Log in

The Surface Effect on the Thermoelectric Property of the [001] and [111] NaMgP Films: A DFT Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Based on the density functional theory framework and full potential augmented plane waves plus local orbitals (FP-LAPW + lo) method with GGA-mBJ approximation, the electronic and thermoelectric (TE) properties of the NaMgP bulk and its films along the [001] and [111] directions have been calculated. The mechanical calculations including the energy–volume (E–V) diagram, elastic constants and phonon dispersion have been indicated the good stability of the NaMgP bulk in the static and dynamic view. The p-type semiconductor nature of this compound by 2.73 eV direct gap has been shown the suitable merit (ZT) parameter for TE applications of 50 K to 800 K temperature range. Based on the surface effect in the [001] and [111] films, the NaMg termination film of [001] film, MgP and NaP terminations of the [111] have the magnetic behavior with half-metallic and magnetic semiconductors, so, their TE behaviors were sensitive to the external magnetic field. The NaMg and MgP terminations have the high amount of the ZT at the 50 K and even that the room temperature for up-spin, which are suitable for power generators at higher temperatures. Also, the NaP termination has the big ZT at 50 K of the up-spin that is suitable for cooling technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Li, Sh. Hao, U. Aydemir, M. Wood, W.A. Goddard, P. Zhai, Q. Zhang, G.J. Snyder, ACS Appl. Mater. Interfaces 9(46) (2016)

    Article  Google Scholar 

  2. P. Larson, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 62, 12754 (2000)

    Article  ADS  Google Scholar 

  3. V. Vikram, J. Kangsabanik, Enamullah, A. Alam, J. Mater. Chem. A 5, 6131 (2017)

    Article  Google Scholar 

  4. M.-S. Lee, F.P. Poudeu, S.D. Mahanti, Phys. Rev. B 83, 085204 (2011)

  5. A. Page, P.F.P. Poudeu, C. Uher, J. Materiomics 1, 10 (2016)

    Google Scholar 

  6. J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, W.H. Butler, Phys. Rev. B 95, 024411 (2017)

    Article  ADS  Google Scholar 

  7. V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011)

    Article  ADS  Google Scholar 

  8. T. Gruhn, Phys. Rev. B 82, 125210 (2010)

    Article  ADS  Google Scholar 

  9. D. Kieven, R. Klenk, Phys. Rev. B 81, 075208 (2010)

    Article  ADS  Google Scholar 

  10. D. Jung, H.-J. Koo, M.-H. Whangbo, J. Mol. Struct. (Theochem) 527, 113 (2000)

    Article  Google Scholar 

  11. G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003)

    Article  ADS  Google Scholar 

  12. S. Bhattacharya, M.J. Skove, M. Russell, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, N. Thadhani, Phys. Rev. B 77, 184203 (2008)

    Article  ADS  Google Scholar 

  13. J. Shiomi, K. Esfarjani, G. Chen, Phys. Rev. B 84, 104302 (2011)

    Article  ADS  Google Scholar 

  14. David Kieven, Reiner Klenk, Phys. Rev. B 81, 075208 (2010)

    Article  ADS  Google Scholar 

  15. M. Arif, G. Murtaza, R. Ali, R. Khenata, Y. Takagiwa, M. Muzammil, S.B. Omran, Indian J. Phys. 90(6), 639 (2016)

    Article  ADS  Google Scholar 

  16. A. Bakhshayeshi, M. Majidiyan Sarmazdeh, R. Taghavi Mendi, A. Boochani, J. Electron. Mater. 46, 2196 (2017)

    Article  ADS  Google Scholar 

  17. A. Ghafari, A. Booochani, C. Janowitz, R. Manzke, Phys. Rev. B 84, 125205 (2011)

    Article  ADS  Google Scholar 

  18. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. P. Blaha, K. Schwarz, J. Luitz, WIEN2K, 2001, Wien2k, Vienna University of Technology, 2002, improved and updated Unix version of the original copyrighted Wien-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990). ISBN 3-9501031-1-2

  20. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  21. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  22. Akio Makishima, John D. Mackenzie, J. Non-Cryst. Solids 17(2), 147 (1975)

    Article  ADS  Google Scholar 

  23. A. Rajabpour, L. Seidabadi, M. Soltanpour, Procedia Mater. Sci. 11, 391 (2015)

    Article  Google Scholar 

  24. M. Jamal, N. Kamali Sarvestani, A. Yazdani, A.H. Reshak, RSC Adv. 4, 57903 (2014)

    Article  Google Scholar 

  25. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  26. A. Yildirim, H. Koc, E. Deligoz, Chin. Phys. B 21, 037101 (2012)

    Article  ADS  Google Scholar 

  27. M.G. Brik, J. Phys. Chem. Solids 71, 1435 (2010)

    Article  ADS  Google Scholar 

  28. M. Jamal, S. Jalali-Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Comput. Mater. Sci. 95, 592 (2014)

    Article  Google Scholar 

  29. X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  Google Scholar 

  30. R. Mohankumar, S. Ramasubramanin, M. Rajagopalan, M. Manivel Raja, S.V. Kamat, J. Kumar, Comput. Mater. Sci. 109, 34 (2015)

    Article  Google Scholar 

  31. A. Shankar, D.P. Rai, R. Khenata, J. Maibam, Sandeep, R.K. Thapa, J. Alloys Compd. 619, 621 (2015)

    Article  Google Scholar 

  32. M. Salimi, S. Javad Hashemifar, J. Alloys Compd. 650, 143 (2015)

    Article  Google Scholar 

  33. Piyawong Poopanya, Phys. Lett. A 9, 379 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, P., Ahadpour, S. The Surface Effect on the Thermoelectric Property of the [001] and [111] NaMgP Films: A DFT Study. Int J Thermophys 40, 58 (2019). https://doi.org/10.1007/s10765-019-2526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2526-0

Keywords

Navigation