Skip to main content
Log in

Thermodynamic phase diagrams, thermoelectric, and half-metallic properties of KCaX2(X=N, O) and their [001] films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Applying density functional theory (DFT) calculations, a report on the electronic structure of two full-Heusler combinations KCaX2 (X=N, O) and their [001] films is presented. Examination of elastic parameters and phase diagrams provided that KCaN2 and KCaO2 bulk structures as well as their four possible terminations, N–N, O–O, K–Ca:KCaN2, and K–Ca:KCaO2, can be synthesized in laboratory. These two Heusler bulk structures, as well as their N–N and O–O terminations, are ferromagnetic half-metals with 100% spin polarization at the Fermi level. The presence of flat valence bands in the \(\Gamma -\mathrm{\rm X}\) direction for KCaN2, KCaO2, and two terminations of N–N and O–O indicates the high effective mass of the holes in these materials, and it promises an excellent thermoelectric behavior of these compounds. The dimensionless figure of merit index (ZT) obtained for these materials is large and good numbers, indicating that the formation of film [001] has led to an improvement in the performance of these Heusler compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R A De Groot, F M Mueller, P G Van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1983).

    Article  ADS  Google Scholar 

  2. R B Helmholdt, R A de Groot, F M Mueller, P G Van Engen and K H J Buschow J. Magn. Magn. Mater. 43 249 (1984).

    Article  ADS  Google Scholar 

  3. T Graf, C Felser and S S Parkin Prog. Solid State Chem. 39 1 (2011).

    Article  Google Scholar 

  4. S A Wolf et al Science 294 1488 (2001).

    Article  ADS  Google Scholar 

  5. C T Tanaka, J Nowak and J S Moodera J. Appl. Phys. 86 6239 (1999).

    Article  ADS  Google Scholar 

  6. C Hordequin, J P Nozieres and J Pierre J. Magn. Magn. Mater 183 225 (1998).

    Article  ADS  Google Scholar 

  7. X Q Chen, R Podloucky and P Rogl J. Appl. Phys. 100 113901 (2006).

    Article  ADS  Google Scholar 

  8. G D Liu, X F Dai, H Y Liu, J L Chen, Y X Li, G Xiao and G H Wu Phys. Rev. B 77 014424 (2008).

    Article  ADS  Google Scholar 

  9. N Kervan and S Kervan Intermetallics 37 88 (2013).

    Article  Google Scholar 

  10. A Kundu, S Ghosh, R Banerjee, S Ghosh and B Sanyal Sci. Rep. 7 1 (2017).

    Article  Google Scholar 

  11. Y W Son, M L Cohen and S G Louie Nature 444 347 (2006).

    Article  ADS  Google Scholar 

  12. G Y Gao, K L Yao and N Li J. Phys. Condens. Matter 23 075501 (2011).

    Article  ADS  Google Scholar 

  13. K L Yao, J L Jiang, Z L Liu and G Y Gao Phys. Lett. A 359 326 (2006).

    Article  ADS  Google Scholar 

  14. O Volnianska and P Boguslawski Phys. Rev. B 83 205205 (2011).

    Article  ADS  Google Scholar 

  15. O Volnianska and P Boguslawski J. Phys. Condens. Matter 22 073202 (2010).

    Article  ADS  Google Scholar 

  16. G Y Gao et al Phys. Rev. B 75 174442 (2007).

    Article  ADS  Google Scholar 

  17. H Rozale, A Amar, A Lakdja, A Moukadem and A Chahed J. Magn. Magn. Mater. 336 83 (2013).

    Article  ADS  Google Scholar 

  18. G Y Gao and K L Yao Appl. Phys. Lett. 91 082512 (2007).

    Article  ADS  Google Scholar 

  19. H Rozale, A Lakdja, A Amar, A Chahed and O Benhelal Comput. Mater. Sci. 69 229 (2013).

    Article  Google Scholar 

  20. R Umamaheswari, D Vijayalakshmi, M Yogeswari and G Kalpana AIP Conf. Proc. 1591 1506 (2014).

    Article  ADS  Google Scholar 

  21. M Dehghanzadeh and F Ahmadian Solid State Commun. 251 50 (2017).

    Article  ADS  Google Scholar 

  22. Y Pei, H Wang, Z M Gibbs, A D LaLonde and G J Snyder N P G Asia Mater. 4 28 (2012).

    Article  Google Scholar 

  23. S Sharma and S K Pandey J. Phys. D Appl. Phys. 47 445303 (2014).

    Article  ADS  Google Scholar 

  24. Y Pei, X Shi, A La Londe, H Wang, L Chen and G J Snyder Nature 473 66 (2011).

    Article  ADS  Google Scholar 

  25. A D LaLonde, Y Pei, H Wang and G J Snyder Mater. Today 14 526 (2011).

    Article  Google Scholar 

  26. S Sharma and S K Pandey J. Phys. Condens. Matter 26 215501 (2014).

    Article  ADS  Google Scholar 

  27. S Picozzi, A Continenza and A J Freeman Phys. Rev. B 66 094421 (2002).

    Article  ADS  Google Scholar 

  28. K Schwarz, P Blaha and G K H Madsen Comput. Phys. Commun. 147 71 (2002).

    Article  ADS  Google Scholar 

  29. E Sjöstedt, L Nordström and D J Singh Solid State Commun. 114 15 (2000).

    Article  ADS  Google Scholar 

  30. J P Perdew et al Phys. Rev. Lett. 100 136406 (2008).

    Article  ADS  Google Scholar 

  31. K Schwarz and G K H Madsen Comput. Phys. Commun. 147 71 (2002).

    Article  ADS  Google Scholar 

  32. G K Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006).

    Article  ADS  Google Scholar 

  33. F D Murnaghan Proc. Nat. Acad. Sci. USA 30 244 (1944).

    Article  ADS  Google Scholar 

  34. J M Guerra, C Mahr, M Giar, M Czerner and C Heiliger Sci. Rep. 10 16333 (2020).

    Article  Google Scholar 

  35. R Hill Proc. Phys. Soc. Sect. A 65 349 (1952).

    Article  ADS  Google Scholar 

  36. J Wang, S Yip, S R Phillpot and D Wolf Phys. Rev. Lett. 71 4182 (1993).

    Article  ADS  Google Scholar 

  37. S F Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823 (1954).

    Article  Google Scholar 

  38. R W Rice InTreatise Mater. Sci. Technol. 11 199 (1977).

    Article  Google Scholar 

  39. M H Elhmar et al J. Magn. Magn. Mater. 393 165 (2015).

    Article  ADS  Google Scholar 

  40. Y Wang, J Cheng, M Behtash, W Tang, J Luo and K Yang Phys. Chem. Chem. Phys. 20 27 18515 (2018).

    Article  Google Scholar 

  41. H J Goldsmid J. Appl. Phys. 5 386 (1954).

    Google Scholar 

  42. Y Pei, A D LaLonde, H Wang and G J Snyder Energy Environ. Sci. 5 7 7963 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Boochani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad, K.G., Boochani, A., Nia, B.A. et al. Thermodynamic phase diagrams, thermoelectric, and half-metallic properties of KCaX2(X=N, O) and their [001] films. Indian J Phys 97, 1071–1086 (2023). https://doi.org/10.1007/s12648-022-02440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02440-x

Keywords

Navigation